Добавить в цитаты Настройки чтения

Страница 14 из 27



Модель магнитных полей в конвективной зоне, определяющих активность Солнца. В синих областях поле направлено на восток, в красных — на запад (слева, фото: HAO/UCAR) и модель  конвекции у поверхности Солнца в области глубиной 20 и шириной 48 мегаметров. Красные линии — восходящие потоки, синие — нисходящие (справа, фото: CHRIS HENZE/NASA)

Спасибо экзопланетчикам

Солнце, при всей его важности для нас, — лишь одна звезда, одна точка на графике. Для общей проверки теории звездной эволюции этого явно недостаточно. Однако изучение колебаний других звезд — очень сложная задача. На Солнце максимальная амплитуда колебаний скорости в одной моде составляет 15–20 см/с. Измерить столь крохотные сдвиги  линий можно пока лишь в спектрах ближайших (и потому ярких) звезд, да и то при использовании лучших спектрографов. Впрочем, иногда можно обойтись и без спектров. Пульсации звезды сопровождаются не только «пляской» спектральных линий, но и небольшими вариациями блеска. Главенствующую роль в астросейсмологии играют частоты пульсаций, и порой не так важно, по какому именно наблюдаемому параметру звезды они определены. Поэтому вместо трудоемкой  спектроскопии в некоторых случаях можно проводить более экономичную фотометрию, то есть вместо измерения отдельных линий в спектре контролировать лишь общую яркость звезды. Правда, и это нелегкая задача, так как колебания блеска очень малы — 0,1% и меньше, а значит, нужны очень чувствительные приемники излучения.

К счастью, таких чувствительных приборов в последнее время становится все больше — они требуются для бурно развивающихся исследований планет, находящихся вне Солнечной системы (их тоже обнаруживают по небольшим колебаниям спектральных линий и блеска звезд). И хотя  «общественную» славу таким приборам, как спектрографы HARPS (Европейская южная обсерватория, Чили) и HIRES (Обсерватория им. Кека, Гавайские о-ва, США) или космические фотометрические телескопы COROT и «Кеплер», принесли обнаруженные с их помощью экзопланеты, для специалистов не менее, а может быть, и более важен вклад этих инструментов в астросейсмические исследования. Так что неслучайно пульсации солнечного типа у другой звезды (субгиганта эты Волопаса) были впервые достоверно зарегистрированы в 1995 году — почти одновременно с открытием первой экзопланеты. Сегодня подобные пульсации зафиксированы уже у двух десятков звезд.  Особенно важны астросейсмические наблюдения для исследования конвекции в звездах. В теории этого процесса есть пробелы, и в компьютерных моделях звезд его приходится запускать, так сказать, «руками», искусственно задавая параметры конвекции. Это, конечно, не лучший способ учитывать действие механизма, который «управляет» магнитным полем солнцеподобных звезд, а на более поздних стадиях эволюции полностью меняет их физическую и химическую структуру. Астросейсмология уже позволила приблизительно определять характер конвекции для одной разновидности голубых гигантов, которые в 10 раз массивнее и в тысячи раз ярче Солнца. Физическая основа возбуждения колебаний у этих звезд не солнечная, а примерно такая же, как у цефеид. У этих звезд также удалось определить зависимость скорости вращения от радиуса. Как и у Солнца, ядро у них вращается в несколько раз быстрее слоев, лежащих ближе к поверхности.

Для обычных солнцеподобных звезд при помощи астросейсмологии удается пока измерить только базовые параметры — массу, радиус, возраст. Но в действительности и это очень много, ведь речь идет о характеристиках одиночных, то есть не входящих в двойные системы звезд, с которых прежде никакими способами нельзя было снять «мерку».

Астросейсмические наблюдения не ограничиваются солнцеподобными звездами. Очень интересными обещают стать исследования пульсаций в бывших звездных ядрах — центральных звездах планетарных туманностей и белых карликах. В этих объектах недра могут находиться не просто в твердом, но даже в кристаллическом состоянии. И здесь астросейсмология открывает возможности для тестирования не только теории звездной эволюции, но и более общих разделов физики, описывающих свойства вещества в экстремальных состояниях.



Космическая обсерватория SOHO работает с 1996 года. Благодаря ей прошлый, 23-й, цикл солнечной активности охвачен непрерывными гелиосейсмическими наблюдениями. Фото: NASA/SOHO SOLAR & HELIOSPHERIC OBSERVATORY

Дело о пропавших элементах

На сегодня большая часть наблюдений звездных осцилляций хорошо согласуется с теорией строения и эволюции звезд. Но это, конечно, не означает, что в будущем нас не поджидают сюрпризы. В качестве примера можно привести наблюдения Проциона — альфы Малого Пса. Эта звезда, одна из самых ярких на земном небе, стала в 1991 году первой, у которой обнаружились признаки пульсаций солнечного типа (хотя и не сами пульсации). На протяжении следующих 10 лет Процион неоднократно наблюдался, его пульсации были сначала просто подтверждены, а потом и подробно изучены. В 2003 году он стал первой звездой в списке целей для космического астросейсмологического телескопа MOST. Наблюдатели непрерывно следили за Проционом в течение месяца... и никаких пульсаций не обнаружили. Лишь после организации дополнительной наблюдательной кампании с участием многих наземных телескопов было окончательно доказано, что Процион действительно пульсирует, но по каким-то причинам колебания в нем затухают гораздо быстрее, чем на Солнце. В результате их спектр усложняется, и для его наблюдений требуется гораздо больше усилий. 

Есть и еще одно темное облачко на чистом и ясном небосклоне гелиосейсмологии. Высококачественные спектры Солнца, полученные несколько лет назад, как будто бы указывают, что на Солнце гораздо меньше тяжелых элементов, чем принято думать. Если до 2005 года считалось, что суммарная масса углерода, азота, кислорода, неона и прочих более тяжелых элементов составляет примерно 2,7% от массы водорода, то теперь эта оценка сократилась до 1,6%. Казалось бы, какая разница, сколько там этих примесей: полтора процента или три? Однако в моделях Солнца с «новым» химическим составом нижняя граница конвективной зоны поднимается с 500 тысяч километров от центра звезды до 510 тысяч. Разница составляет около 1,5% от солнечного радиуса, но она приводит к полному рассогласованию с гелиосейсмическими данными. С 2005 года и по настоящее время не прекращаются попытки помирить гелиосейсмологию со спектроскопией, но результата они пока не принесли. Впрочем, сама величина этого рассогласования дает представление о том, на каком уровне точности происходит сейчас изучение строения Солнца.

Несмотря на эти проблемы, а в чем-то и благодаря им, астросейсмология сейчас находится на подъеме. Практически ни одна крупная астрономическая конференция не обходится без астросейсмологической секции. У астросейсмологов есть  свой научный журнал (Communications in Asteroseismology), свои космические телескопы, свои наземные наблюдательные сети. В астросейсмологии особенно наглядным становится истинно глобальный характер современной астрономии. Для надежного определения частот звездных колебаний необходимы многочасовые и даже многодневные сеансы наблюдений, что невозможно без согласованного использования телескопов, разбросанных по всему земному шару. Сейчас такие наблюдения проводятся при помощи консорциума Всеземного телескопа (Whole Earth Telescope), объединяющего телескопы «общего пользования» двух десятков обсерваторий.  В России в его работе принимают участие телескопы обсерватории на пике Терскол (Кавказ). В ходе тщательно спланированной кампании при любой возможности проводятся наблюдения одного и того же объекта, которые затем «сшиваются» в один наблюдательный ряд. В разработке находятся планы создания специализированной сети телескопов SONG, которая будет состоять из восьми инструментов, по четыре в каждом полушарии. Подобная сеть для наблюдений Солнца (GONG) уже создана и активно работает.