Добавить в цитаты Настройки чтения

Страница 13 из 27



Колебания внутри Солнца. Черные линии — акустические волны сжатия и расширения газа (p-моды). Изменение параметров вещества с глубиной заставляет их многократно возвращаться к поверхности, отражаясь от нее. Серые линии — гравитационные колебания, волны поднятия и опускания газа в собственном гравитационном поле (g-моды). На поверхности они почти не проявляются

Догадка Умова блестяще подтвердилась благодаря исследованиям английского астрофизика Артура Эддингтона, а в 1958 году советский физик Сергей Жевакин построил теорию пульсации цефеид. Они действительно «дышат»: расширяются и сжимаются со скоростями, достигающими десятков километров в секунду. Так что дельту Цефея можно считать самым первым объектом, исследованным методами астросейсмологии. Самым первым, но не самым интересным. Дело в том, что пульсации цефеидного типа охватывают лишь незначительную часть массы звезды и для детального ее изучения не годятся. Да и возникают они только в звездах с подходящими параметрами (температурой, плотностью, химическим составом), в которых из любого случайного возмущения развиваются устойчивые автоколебания. Но к чему приведет такое же случайное возмущение в звезде с «неподходящими» параметрами, не способной к пульсации цефеидного типа?

По такой звезде от места возмущения побежит во все стороны волна, часть которой уйдет вглубь звезды, часть пойдет наружу, отразится от поверхности звезды и снова устремится внутрь, пересечет звезду насквозь, опять отразится, смешается с волнами от других возмущений. А возмущений таких много: от конвективных течений, от вспышек на поверхности... В результате вся звезда гудит, подрагивает и становится желанным объектом для сейсмического исследования!

Моды солнечной ряби

На некоторое подрагивание спектральных линий Солнца еще в 1913 году обратил внимание канадский астроном Джон Пласкетт. Однако настоящая история сейсмических исследований дневного светила началась в 1962 году, когда выяснилось, что линии не просто подрагивают, а испытывают колебания с периодом около пяти минут и амплитудой, соответствующей разбросу скоростей в несколько сотен метров в секунду. То есть по поверхности Солнца постоянно гуляют волны высотой в десятки километров. Некоторое время им не придавали большого значения, считая локальным явлением, сопровождающим выход к поверхности конвективных потоков. Но к   началу 1970-х годов появились детальные модели внутреннего строения Солнца, благодаря которым удалось увидеть (или услышать?) в этих колебаниях отзвуки глобальной вибрации солнечного вещества. Точнее, пятиминутные осцилляции оказались результатом сложения отдельных волн, или колебательных мод, полное число которых в спектре солнечных пульсаций составляет порядка 10 миллионов. Это акустические колебания, то есть обычные звуковые волны, представляющие собой уплотнения газовой среды. Амплитуды отдельных мод крайне малы, но, складываясь, они могут взаимно значительно усиливать друг друга.

Акустические пульсации разделяются на радиальные, при которых меняется объем Солнца, и нерадиальные, порождающие волны на его поверхности. Радиальные пульсации родственны колебаниям цефеид. Они вызываются волнами, которые уходят вертикально вниз, проходят через центр Солнца, доходят до другой его стороны, отражаются от нее, снова проходят через центр и так далее. Тонкость, однако, в том, что цефеиды (да и то не все) колеблются в так называемой фундаментальной моде, то есть раздуваются и сжимаются как целое, а «спокойные» звезды вроде Солнца при таких же пульсациях разделяются по радиусу на множество слоев, в которых сжатие и расширение чередуются: колебания происходят в обертонах.

Сложнее обстоит дело с нерадиальными пульсациями — тут уже речь идет о движении отдельных «пятен» на поверхности Солнца. Они связаны с волнами, которые ушли вниз не вертикально, а под углом. Из-за того что в недрах меняется  скорость звука, такие волны, достигнув некоторой глубины, разворачиваются и возвращаются к поверхности звезды недалеко от исходной точки. Там волна снова отражается и описывает внутри Солнца очередную дугу. Чем сильнее исходная волна отклонилась от вертикали, тем меньше глубина ее погружения, чаще возвраты к поверхности и мельче вызываемая ею «рябь» на поверхности Солнца.

Непрерывно следя за этой рябью, можно построить спектр акустических колебаний Солнца и сравнить его с предсказаниями различных теоретических моделей внутреннего строения нашего светила. Причем неглубокие моды «прочесывают» приповерхностные слои, а радиальные и близкие к ним колебания несут информацию не только об условиях в ядре Солнца, но и о событиях на его противоположной стороне. Благодаря этому удается фиксировать активные области до того, как они выйдут из-за края солнечного лимба, а также следить за ними уже после того, как они скроются из виду.



Модель одной из миллионов нерадиальных мод колебаний на поверхности Солнца. Смещения преувеличены более чем в 1000 раз (справа, фото: MSFC/NASA)

Резонансное акустическое колебание внутри Солнца. Разными цветами показаны области газа, смещенные в разных направлениях (слева, фото: EUROPEAN SOUTHERN OBSERVATORY)

Анатомия солнечного вихря

За последние 30 лет гелиосейсмологи смогли получить детальные сведения о распределении плотности, температуры и содержании гелия в солнечных недрах. Содержание гелия характеризует степень переработки водородного топлива солнечным термоядерным реактором. По нему можно оценить, что возраст нашего светила составляет 4,65 миллиарда лет. Это прекрасно согласуется с данными о возрасте Земли,   которые получены совершенно независимым методом — по распаду радиоактивных элементов. Одним из первых результатов телескопических наблюдений, сделанных еще в XVII веке, стало определение скорости вращения Солнца по движению пятен на его поверхности. Экваториальные области делают оборот за 25 суток. С ростом широты период увеличивается, достигая у полюсов 38 суток. Но о том, как вращается Солнце внутри, до появления гелиосейсмологии можно было только догадываться. Теперь же все стало ясно: движение вещества в солнечных недрах сносит (икажает) проходящие по нему акустические волны, причем по-разному на различных расстояниях до центра. И в общей  картине колебаний на поверхности Солнца появляются дополнительные частоты, по которым и определяется скорость вращения на глубине, куда проникает соответствующая мода.

Так, например, оказалось, что быстрее всего вращается вещество на глубине нескольких десятков тысяч километров под экватором. В конвективной зоне Солнца, где энергия выносится наверх за счет перемешивания газа, вращение носит сложный характер: с глубиной угловая скорость на экваторе убывает, а вблизи полюсов растет. Ядро Солнца вращается как твердое тело, то есть в нем угловая скорость от расстояния до центра уже не зависит. А на расстоянии в 500 тысяч километров от центра расположен узкий слой — тахоклин, исполняющий роль смазки между ядром и нижней границей конвективной зоны. Предполагается, что именно он отвечает за магнитную активность Солнца.

О вращении вещества в самом центре Солнца, в радиусе менее 200 тысяч километров, пока толком сказать нечего. Акустические моды здесь мало что могут подсказать, и потому большие надежды возлагаются на еще один вид колебаний — так называемые гравитационные моды. В них роль движущей силы играет не давление, как в акустических модах, а подъем и опускание вещества в поле тяготения ядра звезды. В отличие от акустических мод, сосредоточенных в основном у поверхности, гравитационные моды «играют» в центре. Именно в них зашифрованы тайны солнечного ядра. К сожалению, с приближением к поверхности они быстро затухают. На сегодня есть лишь одно наблюдение, в котором их  как будто удалось зафиксировать, и из него следует, что внутреннее ядро Солнца вращается чуть ли не в пять раз быстрее внешнего ядра. Но эти результаты еще нуждаются в дополнительной проверке.