Добавить в цитаты Настройки чтения

Страница 112 из 151



Физика струн и дополнительные измерения

Красота общей теории относительности в том, что физика гравитации контролируется геометрией пространства. С дополнительными пространственными измерениями, предлагаемыми теорией струн, вы, естественно, можете предположить, что мощь геометрии в определении физики может значительно возрасти. И это действительно так. Чтобы это увидеть, рассмотрим вопрос, который я до сих пор обходил стороной. Почему теория струн требует десять пространственно-временных измерений? Это вопрос, на который трудно ответить без привлечения математики, но я попытаюсь объяснить, как это получается в результате взаимодействия геометрии и физики.

Представьте струну, которая может колебаться только вдоль двумерной поверхности плоского стола. Струна будет в состоянии колебаться разными способами, но только такими, которые включают движения в направлениях вправо/влево и вперёд/назад на поверхности стола. Если теперь струне позволить колебаться в третьем направлении, двигаясь в направлении вверх/вниз, которое выходит за пределы поверхности стола, становятся допустимыми дополнительные моды колебаний. Итак, хотя это и трудно изобразить более чем в трёх измерениях, это заключение — большее количество измерений означает большее количество мод колебаний — является общим. Если струна может колебаться в четвёртом пространственном измерении, она может колебаться большим числом способов, по сравнению с тремя измерениями; если струна может колебаться в пятом пространственном измерении, она может проявить больше способов колебаний, чем это было только в четырёх измерениях; и т. д. Это важный вывод, поскольку в теории струн имеется уравнение, которое требует, чтобы число независимых способов колебаний удовлетворяло очень точному ограничению. Если ограничение нарушается, математика теории струн разваливается и её уравнения становятся бессмысленными. Во Вселенной с тремя пространственными измерениями число способов колебаний слишком мало и ограничение не выполняется; с четырьмя пространственными измерениями число способов колебаний всё ещё слишком мало; для пяти, шести, семи или восьми измерений оно всё ещё слишком мало; но для девяти пространственных измерений ограничение на число способов колебаний выполняется в точности. Именно так теория струн определяет число пространственных измерений.[250]{251}

Хотя это хорошо иллюстрирует взаимодействие геометрии и физики, их связь в рамках теории струн идёт ещё дальше и, фактически, обеспечивает способ решения критической проблемы, с которой мы сталкивались ранее. Напомним, что в попытках установить детальную связь между модами колебаний струны и известными семействами частиц физики потерпели крах. Они нашли, что имеется слишком много безмассовых мод колебаний струны и, более того, точные свойства мод колебаний не соответствуют свойствам известных частиц материи и переносчиков взаимодействий. Но, хотя такие вычисления и принимали в расчёт число дополнительных измерений (отчасти объясняя, почему было найдено так много способов колебаний струн), они не принимали в расчёт малый размер и сложную форму дополнительных измерений — они предполагали, что все пространственные измерения плоские и полностью развёрнутые, — а это приводит к существенным отличиям. Я не упоминал об этом раньше, поскольку мы тогда ещё не обсуждали идею дополнительных измерений.

Струны столь малы, что даже когда дополнительные шесть измерений свёрнуты в пространство Калаби-Яу, они могут колебаться в этих направлениях. Это чрезвычайно важно по двум причинам. Во-первых, это обеспечивает, что струны всегда колеблются во всех девяти пространственных измерениях, и потому условие на число мод колебаний продолжает выполняться, даже когда дополнительные измерения свёрнуты. Во-вторых, точно так же, как на колебания потока воздуха, продуваемого через трубу, влияют повороты и изгибы музыкального инструмента, моды колебаний струн подвергаются воздействию искривлений и поворотов в геометрии дополнительных шести измерений. Если вы изменили форму трубы, сделав путь прохождения воздуха более узким или сделав трубу длиннее, моды колебаний воздуха и, следовательно, звук инструмента изменятся. Аналогично, если форму и размер дополнительных измерений модифицировать, это также существенно повлияет на точные свойства возможных способов колебаний струны. А поскольку способ колебания струны определяет её массу и заряд, то это значит, что дополнительные измерения играют центральную роль в определении свойств частиц.

Это ключевое заключение. Точный размер и форма дополнительных измерений оказывают чрезвычайное воздействие на моды колебаний струн, а значит, на свойства частиц. Поскольку базовая структура Вселенной — от формирования галактик и звёзд до существования жизни, как мы её знаем, — чувствительно зависит от свойств частиц, код космоса вполне может быть записан в геометрии пространства Калаби-Яу.

На рис. 12.9 был представлен один пример пространства Калаби-Яу, но имеются по меньшей мере сотни тысяч других возможностей. Тогда вопрос заключается в том, которое из многообразий Калаби-Яу, если это действительно имеет место, соответствует части пространственно-временно́й ткани, связанной с дополнительными измерениями. Это один из наиболее важных вопросов, стоящих перед теорией струн, поскольку только при определённом выборе пространства Калаби-Яу детально определяются свойства колебательных мод струны. На сегодняшний день этот вопрос остаётся без ответа. Причина в том, что текущее понимание уравнений теории струн не обеспечивает решение задачи о выборе одной формы из многих; с точки зрения известных уравнений каждое пространство Калаби-Яу так же пригодно, как и любое другое. Уравнения даже не определяют размера дополнительных измерений. Поскольку мы не видим дополнительных измерений, они должны быть малы, но вопрос о том, насколько именно малы, остаётся открытым.

Является ли это фатальным пороком теории? Возможно. Но я так не думаю. Как мы будем подробнее обсуждать в следующей главе, точные уравнения теории струн ускользают от теоретиков в течение многих лет, поэтому во многих работах использовались приближённые уравнения. Это позволило выделить многие свойства теории струн, но в некоторых вопросах — включая точный размер и форму дополнительных измерений — приближённых уравнений недостаточно. Поскольку мы продолжаем уточнять наш математический анализ и совершенствовать эти приближённые уравнения, определение формы дополнительных измерений является первой — и, на мой взгляд, достижимой — целью. Но до сих пор эта цель остаётся за пределами достигнутого.



Тем не менее мы можем задаться вопросом, приводит ли выбор дополнительных измерений в форме пространства Калаби-Яу к модам колебаний струны, которые близко аппроксимируют известные частицы. И здесь ответ вполне удовлетворительный.

Хотя мы далеки от того, чтобы исследовать все возможности, но были найдены примеры пространств Калаби-Яу, которые приводят к модам колебаний струн, которые в грубом приближении согласуются с табл. 12.1 и 12.2. Например, в середине 1980-х гг. Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен (команда физиков, которые обнаружили связь пространств Калаби-Яу с теорией струн) нашли, что каждая дырка (термин, используемый в точно определённом математическом смысле), содержащаяся в пространстве Калаби-Яу, приводит к семейству низкоэнергетических колебательных мод струны. Пространство Калаби-Яу с тремя дырками, следовательно, могло бы дать объяснение для повторяющейся структуры трёх поколений элементарных частиц в табл. 12.1. Действительно, был найден ряд таких «трёхдырочных» пространств Калаби-Яу. Более того, среди этих предпочтительных пространств Калаби-Яу есть такие, которые в точности дают как правильное число частиц — переносчиков взаимодействий, так и правильные электрические заряды и другие ядерные свойства частиц в табл. 12.1 и 12.2.

[250]

Позвольте мне подготовить вас к одному существенному результату, с которым мы столкнёмся в следующей главе. Струнные теоретики десятки лет знали, что уравнения, которые они обычно используют для математического анализа теории струн, являются приближёнными (точные уравнения оказывается трудно найти и понять). Однако большинство думает, что приближённые уравнения были достаточно точны для определения требуемого числа дополнительных измерений. Совсем недавно (и к изумлению большинства физиков, работающих в этой области) некоторые струнные теоретики показали, что приближённые уравнения теряют одно измерение; сейчас признано, что теория требует семь дополнительных измерений. Как мы увидим, это не компрометирует материал, обсуждаемый в этой главе, но показывает, что он должен быть вложен в более широкую, фактически ещё более унифицированную схему.{329}

{251}

Вы можете поинтересоваться, возможны ли не только дополнительные пространственные измерения, но также и дополнительные временны́е измерения. Исследователи (такие как Ицхак Барс из университета Южной Калифорнии) рассмотрели эту возможность и показали, что по меньшей мере возможно сформулировать теорию со вторым временны́м измерением, которая кажется физически разумной. Но является ли это второе временно́е измерение реальным наряду с обычным временным измерением или это только математический трюк, до конца не было установлено; общее ощущение скорее в пользу второго, чем первого. Наоборот, наиболее прямое прочтение теории струн говорит, что дополнительные пространственные измерения являются во всех отношениях столь же реальными, как и три, которые мы знаем.