Добавить в цитаты Настройки чтения

Страница 111 из 151



Это абсолютно новый вид результата, с которым никогда раньше не сталкивались в истории физики. До струн ни одна теория совсем ничего не говорила о числе пространственных измерений во Вселенной. Все теории от Ньютона до Максвелла и Эйнштейна полагали, что Вселенная имеет три пространственных измерения, так же, как мы все полагаем, что солнце завтра взойдёт. Калуца и Клейн предложили поставить это под вопрос, выдвинув мысль, что имеется четыре пространственных измерения, но это означало только другое допущение; пусть и отличное, но всё равно допущение. Теперь же впервые теория струн предлагала уравнения, которые предсказывали число пространственных измерений. Вычисление — не допущение, не гипотеза, не инспирированная чем-то догадка — определяет число пространственных измерений в теории струн, и удивительным оказалось то, что это вычисленное число равно не трём, а девяти. Теория струн неотвратимо привела нас к Вселенной с шестью дополнительным пространственными измерениями и потому обеспечила убедительный, готовый к употреблению контекст для использования идей Калуцы и Клейна.

Оригинальное предложение Калуцы и Клейна предполагало только одно скрытое измерение, но оно легко обобщается на два, три или даже шесть дополнительных измерений, требуемых теорией струн. Например, на рис. 12.8а мы заменили дополнительное циклическое измерение — одномерную форму рис. 12.7, на поверхность сферы, двумерную форму (как упоминалось в главе 8, поверхность сферы является двумерной, поскольку вам нужны два блока данных — вроде широты и долготы на земной поверхности, — чтобы определить положение). Как и в примере с окружностью, вы должны представлять сферу прикреплённой к каждой точке обычных измерений, хотя на рис. 12.8а, чтобы оставить рисунок ясным, мы нарисовали только те сферы, которые лежат на пересечениях линий сетки. В такой Вселенной для того чтобы определить положение в пространстве, вам бы понадобилось всего пять блоков данных: три блока, чтобы определить ваше положение в протяжённых измерениях (улица, номер дома, номер этажа) и два блока, чтобы определить ваше положение на сфере, прикреплённой к этой точке (широта, долгота). Безусловно, если радиус сферы очень мал — в миллиарды раз меньше, чем атом, — последние два блока данных почти не будут иметь значения для относительно больших объектов вроде нас самих. Тем не менее дополнительная размерность является неотъемлемой частью ультрамикроскопического строения пространственной ткани. Ультрамикроскопическому червячку понадобятся все пять блоков данных, а если мы включим время, ему потребуется шесть блоков данных, чтобы указать, где будет вечеринка и в какое время.

Рис. 12.8. Соединение Вселенной с тремя обычными измерениями, представленными сеткой, и (а) двух свёрнутых измерений в форме пустых сфер; (б) трёх свёрнутых измерений в форме сплошных шаров

Продвинемся ещё на одно измерение дальше. На рис. 12.8а мы рассмотрели только поверхность сфер. Представьте теперь, что ткань пространства включает также и внутренность сфер, как на рис. 12.8б, — наш планковский червячок может проникнуть во внутренность сферы, как обычный червяк это делает с яблоком, и свободно там передвигаться. Чтобы определить положение червяка, теперь требуется шесть блоков информации: три, чтобы определить его положение в обычных протяжённых пространственных измерениях, и ещё три, чтобы определить его положение в шаре, прикреплённом к данной точке (широта, долгота, глубина проникновения). Вместе со временем, следовательно, это есть пример Вселенной с семью пространственно-временными измерениями.

Теперь сделаем скачок. Хотя это невозможно нарисовать, представьте, что в каждой точке в трёх протяжённых измерениях повседневной жизни Вселенная имеет не одно дополнительное измерение как на рис. 12.7, не два дополнительных измерения, как на рис. 12.8а, не три дополнительных измерения, как на рис. 12.8б, но шесть дополнительных пространственных измерений. Я, конечно, не могу визуализировать это, и я никогда не встречал никого, кто бы смог. Но смысл ясен. Чтобы задать пространственное положение червячка планковского размера в такой Вселенной, требуется девять блоков данных: три, чтобы задать его положение в обычных протяжённых измерениях, и ещё шесть, чтобы определить его положение в свёрнутых измерениях, прикреплённых к этой точке. Когда принимается во внимание и время, это оказывается Вселенной с десятимерным пространством-временем, как требуют уравнения теории струн. Если дополнительные шесть измерений свёрнуты в достаточно малые образования, они легко ускользнут от обнаружения.

Форма скрытых измерений



Уравнения теории струн на самом деле определяют больше, чем просто число пространственных измерений. Они также определяют, какую форму могут принимать дополнительные размерности.{249} На предыдущих рисунках мы сосредоточились на простейших формах — окружности, полые сферы, сплошные шары, — но уравнения теории струн выбирают существенно более сложный класс шестимерных форм, известных как пространства или многообразия Калаби-Яу. Эти пространства названы в честь двух математиков, Эугенио Калаби и Шин-Тун Яу, которые математически открыли их задолго до того, как была понята их связь с теорией струн; грубая иллюстрация одного примера дана на рис. 12.9а. Надо иметь в виду, что на этом рисунке двумерное изображение иллюстрирует шестимерный объект, и это приводит к большому числу существенных искажений. Даже в этих условиях рисунок даёт грубое представление о том, на что похожи эти многообразия. Если то частное пространство Калаби-Яу, которое показано на рис. 12.9а, составляет дополнительные шесть измерений теории струн, то пространство на ультрамикроскомическом масштабе будет иметь вид, показанный на рис. 12.9б. Поскольку пространство Калаби-Яу прикреплено к каждой точке в трёх обычных измерениях, вы, и я, и кто угодно другой окружены и заполнены этими маленькими формами. Буквально, если вы перемещаетесь из одного места в другое, ваше тело будет двигаться через все девять измерений, быстро и последовательно проходя через целые многообразия, так что в среднем кажется, будто вы вовсе не двигаетесь через шесть дополнительных измерений.

Рис. 12.9. (а) Один из примеров многообразия (или пространства) Калаби-Яу. (б) Сильно увеличенный участок пространства с дополнительными измерениями в форме мельчайших пространств Калаби-Яу

Если эти идеи верны, ультрамикроскопическая ткань космоса украшена богатейшей текстурой.

{249}

Заметим, что требование симметрии, заключающейся в однородности пространства, которое мы использовали в главе 8, чтобы сузить количество форм Вселенной, мотивируется астрономическими наблюдениями (такими как наблюдения микроволнового фонового излучения) трёх больших измерений. Эти условия симметрии не влияют на форму возможных шести микроскопических дополнительных измерений.