Страница 108 из 151
И говоря гигантские, я действительно имею в виду гигантские. Расчёты показывают, что массы колебаний струны следуют рядам, аналогичным музыкальным гармоникам: они все являются кратными фундаментальной массе, массе Планка, так же как все обертона музыкальной струны являются целыми кратными основной частоты или тона. По стандартам физики частиц планковская масса колоссальна — около десяти миллиардов миллиардов (1019) масс протона, грубо говоря, порядка массы пылинки или бактерии. Так что возможные массы колебаний струны суть нуль масс Планка, одна масса Планка, две массы Планка, три массы Планка и т. д., что показывает, что все массы, кроме колебания струны с нулевой массой, чудовищно велики.{244}
Как вы видите, некоторые частицы в табл. 12.1 и 12.2 действительно являются безмассовыми, но большая часть нет. А ненулевые массы в этих таблицах дальше от планковской массы, чем султан Брунея от нужды в кредите. Таким образом, мы ясно видим, что массы известных частиц не соответствуют закономерности, предлагаемой теорией струн. Значит ли это, что теория струн закрыта? Вы могли бы так подумать, но это неверно. Наличие бесконечного списка мод колебаний, массы которых всё более удаляются от масс известных частиц, является вызовом, который теория должна преодолеть. Годы исследований открыли подающие надежды стратегии, как это сделать.
Для начала заметим, что эксперименты с известными типами частиц научили нас, что тяжёлые частицы имеют тенденцию быть нестабильными; обычно тяжёлые частицы быстро распадаются в дождь частиц меньшей массы, в конце концов генерируя легчайшие и более привычные частицы из табл. 12.1 и 12.2 (например, t-кварк распадается примерно за 10−24 с). Мы ожидаем, что это остаётся верным и для «сверхтяжёлых» мод колебаний струны, и это могло бы объяснить, почему, даже если такие моды колебаний массово возникали в ранней горячей Вселенной, до сегодняшнего дня их уцелело крайне мало или вообще ни одна. Даже если теория струн верна, нашим единственным шансом увидеть эти сверхтяжёлые моды колебаний будет произвести их в высокоэнергетических столкновениях в ускорителях частиц. Однако, так как современные ускорители могут достигнуть только энергий, по порядку величины эквивалентных тысяче масс протона, они слишком слабы, чтобы возбудить любые, кроме самых спокойных, моды колебаний теории струн. Таким образом, предсказание теории струн о башне частиц с массами, начинающимися с величины в несколько миллионов миллиардов раз большей, чем достижимо для сегодняшней технологии, не конфликтует с наблюдениями.
Из этого объяснения также ясно, что контакт между теорией струн и физикой частиц будет касаться только самых низкоэнергетических — безмассовых — колебаний струны, поскольку другие находятся далеко за пределами того, что мы можем достигнуть с сегодняшней технологией. Но как быть с фактом, что большинство частиц в табл. 12.1 и 12.2 не являются безмассовыми? Это важная проблема, но менее трудная, чем сначала может показаться. Поскольку планковская масса огромна, даже наиболее массивные из известных частиц, t-кварки, весят всего только 116 ∙ 10−19 или около 10−17 от планковской массы. Что касается электрона, его вес составляет 34 ∙ 10−24 от планковской массы. Так что в первом приближении — с точностью лучше, чем один к 1017, — все частицы в табл. 12.1 и 12.2 имеют массы, равные нулю планковских масс (это примерно как большинство состояний жителей Земли в первом приближении равно нулю по сравнению с состоянием султана Брунея) — точно так, как и «предсказано» теорией струн. Нашей целью является улучшить это приближение и показать, что теория струн объясняет мелкие отклонения масс от нуля, характерные для частиц в табл. 12.1 и 12.2. Но безмассовые моды колебаний не настолько сильно не соответствуют данным опыта, как вы могли бы сначала подумать.
Это ободряет, но внимательный анализ обнаруживает дальнейшие проблемы. Используя уравнения теории суперструн, физики составили список всех безмассовых мод колебаний струны. Одна из записей соответствует гравитону со спином 2, и это большой успех, благодаря которому всё и началось; это гарантирует, что гравитация является частью квантовой теории струн. Но расчёты также показывают, что имеется намного больше безмассовых мод колебаний со спином 1, чем имеется частиц в табл. 12.2, и имеется много больше безмассовых мод колебаний со спином 1/2, чем имеется частиц в табл. 12.1. Более того, список мод колебаний со спином 1/2 не показывает признаков существования повторяющихся групп, напоминающих поколения частиц в табл. 12.1. При поверхностном анализе кажется, что очень трудно увидеть, как колебания струн могут соответствовать известными типам частиц.
Таким образом, к середине 1980-х гг. были основания для оптимизма по поводу теории суперструн, но также существовали и причины для скепсиса. Несомненно, теория суперструн представляла огромный шаг к унификации. Обеспечив первый состоятельный подход к соединению гравитации и квантовой механики, она сделала для физики то же, что сделал Роджер Баннистер в 1954 г. для забега на милю, «выбежав» из четырёх минут: она показала, что кажущееся невозможным возможно. Теория суперструн определённо установила, что мы можем прорваться через кажущийся непроходимым барьер, разделяющий два столпа физики двадцатого столетия.
Однако в попытках идти дальше и показать, что теория суперструн может объяснить детальные свойства материи и сил природы, физики столкнулись с трудностями. Это привело скептиков к заявлению, что теория суперструн, несмотря на весь её потенциал унификации, является просто математической структурой, напрямую никак не связанной с физической Вселенной.
Даже при всех тех проблемах, которые мы сейчас обсуждали, во главе списка проблем теории суперструн, составленного скептиками, была особенность, с которой мне пора вас познакомить. Теория суперструн действительно обеспечивает успешное соединение гравитации и квантовой механики, единственно свободное от математической несостоятельности, которая была бедствием всех предыдущих попыток. Однако, хотя это может звучать странно, в первые годы после её открытия физики нашли, что уравнения теории суперструн не имеют этих завидных свойств, если Вселенная имеет три пространственных измерения. Уравнения теории струн математически состоятельны, только если Вселенная имеет девять пространственных измерений, или, включая временно́е измерение, они работают только во Вселенной с десятью пространственно-временны́ми измерениями!
В сравнении с этим странно звучащим утверждением проблемы в установлении точного соответствия между модами колебаний струн и известными типами частиц кажутся второстепенной проблемой. Теория суперструн требует существования шести измерений пространства, которых никто никогда не видел. Это не мелкая деталь — это действительно проблема.
Или они существуют?
Теоретические открытия, сделанные в течение первых десятилетий XX в., задолго до появления на сцене теории струн, показали, что дополнительные измерения совсем не обязаны быть проблемой. И, переосмыслив эту проблематику, в конце XX в. физики показали, что эти дополнительные измерения дают возможность перекинуть мост через пропасть между модами колебаний в теории струн и элементарными частицами, открытыми экспериментаторами.
Это одно из самых впечатляющих достижений теории; посмотрим, как это работает.
{244}
Как можно отметить для склонного к математике читателя, наиболее точное утверждение состоит в том, что квадраты масс колебательных мод струны являются целыми крайними квадрата планковской массы. Ещё более точно (и в соответствии с недавними разработками, затронутыми в главе 13), квадраты этих масс являются целыми крайними струнного масштаба (что пропорционально обратному квадрату длины струны). В общепринятой формулировке теории струн струнный масштаб и планковская масса связаны, почему я и допустил упрощение в главном тексте и ввёл только планковскую массу. Однако в главе 13 мы рассмотрим ситуации, в которых струнный масштаб может отличаться от планковской массы.