Страница 107 из 151
Свойства частиц в теории струн
Чтобы понять новую объяснительную схему теории струн, нам нужно лучше почувствовать, как вибрации струн производят свойства частиц, так что рассмотрим простейшее свойство частицы, её массу.
Из формулы E = mc2 мы знаем, что масса и энергия взаимозаменяемы; как доллар и евро, они являются конвертируемыми валютами (но в отличие от денежных валют, они имеют фиксированный курс обмена, заданный скоростью света, умноженной на себя, c2). Наше выживание зависит от уравнения Эйнштейна, поскольку солнечное тепло и свет, поддерживающие жизнь, генерируются путём конвертирования 4,3 млн т материи в энергию каждую секунду; однажды ядерные реакторы на Земле смогут, подражая Солнцу, безопасно заставить работать уравнение Эйнштейна, чтобы обеспечить человечество практически неограниченными запасами энергии.
В этих примерах энергия получается из массы. Но уравнение Эйнштейна прекрасно работает и в обратном направлении — в направлении, в котором масса получается из энергии, — и это то направление, в котором теория струн использует уравнение Эйнштейна. Масса частицы в теории струн есть не что иное, как энергия её вибрирующей струны. Например, объяснение, которое теория струн предлагает тому, почему одна частица тяжелее, чем другая, состоит в том, что струна, представляющая более тяжёлую частицу, колеблется быстрее и сильнее, чем струна, представляющая более лёгкую частицу. Более быстрые и сильные колебания означают более высокую энергию, а более высокая энергия транслируется через формулу Эйнштейна в бо́льшую массу. И наоборот, чем легче частица, тем медленнее и слабее соответствующая вибрация струны; безмассовая частица вроде фотона или гравитона соответствует струне, вибрирующей наиболее спокойным и мягким способом, каким только возможно.[242]{243}
Другие свойства частицы, такие как её электрический заряд и спин, кодируются более тонкими свойствами колебаний струны. По сравнению с массой эти свойства труднее описать без использования математики, но они следуют той же самой основной идее: способ колебаний является отпечатком пальца частицы; все свойства, которые мы используем, чтобы отличать одну частицу от другой, определяются способом колебаний струны, соответствующей данной частице.
В начале 1970-х гг., когда физики анализировали способы вибраций, возникающие в первой инкарнации струнной теории — теории бозонных струн, — чтобы определить разновидности свойств частиц, которые может предсказывать теория, они налетели на подводный камень. Каждому способу вибрации в теории бозонных струн соответствовало целочисленное значение спина: 0, 1, 2 и т. д. Это было проблемой, поскольку, хотя частицы — переносчики взаимодействий имеют значения спина этого вида, частицы материи (вроде электронов и кварков) — нет. Они имеют дробное значение спина — 1/2. В 1971 г. Пьер Рамон из университета Флориды нашёл средство от этого недостатка — он нашёл способ так модифицировать уравнения теории бозонных струн, чтобы допустить также и способы колебаний с полуцелым спином.
Фактически, при ближайшем рассмотрении исследования Рамона, вместе с результатами Шварца и его коллеги Андре Невье и вместе с более поздними идеями Фердинандо Глиоцци, Джоэля Шерка и Дэвида Олива, открыли совершенный баланс — новую симметрию — между фигурами колебаний с различными спинами в модифицированной теории струн. Эти исследователи нашли, что новые способы вибраций возникают парами, в которых величина спина отличается на 1/2. Для каждого способа колебаний со спином 1/2 имеется ассоциированный способ колебаний со спином 0. Для каждого способа колебаний со спином 1 имеется ассоциированный способ колебаний со спином 1/2 и т. д. Связь между целыми и полуцелыми значениями спина назвали суперсимметрией, и вместе с этими результатами родилась суперсимметричная теория струн, или теория суперструн. Примерно десятью годами позже, когда Шварц и Грин показали, что все потенциальные аномалии, которые угрожали теории струн, уничтожили друг друга, они на самом деле работали в теории суперструн, так что революцию, вызванную их статьёй, правильнее называть первой суперструнной революцией. (В последующем мы часто будем ссылаться на струны и на теорию струн, но это только для краткости; мы всегда имеем в виду суперструны и теорию суперструн.)
Исходя из этого, мы можем теперь сформулировать, как от общего описания теории струн перейти к детальному описанию Вселенной. Это сводится к следующему: среди способов колебаний, которым могут быть подвержены струны, должны быть такие способы, свойства которых согласуются с соответствующими свойствами известных частиц. Теория содержит моды колебаний со спином 1/2, но она должна включать моды со спином 1/2, точно соответствующие известным частицам материи, которые приведены в табл. 12.1. Теория содержит моды колебаний со спином 1, но она должна включать такие моды колебаний со спином 1, которые точно соответствуют известным частицам — переносчикам взаимодействий, которые приведены в табл. 12.2. Наконец, если в экспериментах на самом деле будут открыты частицы со спином 0, такие как предсказаны для полей Хиггса, теория струн должна обеспечить моды колебаний, которые точно соответствуют свойствам и этих частиц тоже. Короче говоря, чтобы теория струн была жизнеспособной, её моды колебаний должны давать и объяснять частицы стандартной модели.
Здесь, следовательно, теории струн есть где развернуться. Если теория струн верна, то объяснения свойств частиц, которые нашли экспериментаторы, существуют, и они должны быть найдены среди резонансных мод колебаний, которым может быть подвержена струна. Если свойства этих мод колебаний будут соответствовать свойствам частиц из табл. 12.1 и 12.2, то, я думаю, это убедит даже непримиримых скептиков, вне зависимости от того, видел ли кто-нибудь протяжённую структуру самой струны непосредственно, или нет. И помимо подтверждения теории струн как долгожданной единой теории, при таком соответствии между теорией и экспериментальными данными теория струн обеспечит первое фундаментальное объяснение, почему Вселенная такова, какова она есть.
Как же теория струн проходит это решающее испытание?
Слишком много колебаний
На первый взгляд, теория струн терпит крах. Для начала, существует бесконечное число различных способов колебаний струны; несколько первых из этой бесконечной серии схематически изображены на рис. 12.4. Однако табл. 12.1 и 12.2 содержат только конечный список частиц, так что с самого начала мы, кажется, имеем глубокое несоответствие между теорией струн и реальным миром. Более того, если мы математически проанализируем возможные энергии — и, следовательно, массы — этих колебательных мод, мы придём к другому существенному разногласию между теорией и наблюдениями. Массы допустимых мод колебаний струны не похожи на экспериментально измеренные массы частиц, выписанные в табл. 12.1 и 12.2. Нетрудно увидеть, почему.
Рис. 12.4. Несколько примеров способов (мод) колебаний струны
В начале развития теории струн исследователи понимали, что жёсткость струны обратно пропорциональна её длине (квадрату её длины, более точно): в то время как длинные струны изгибаются легко, чем короче струна, тем жёстче она становится. В 1974 г., когда Шварц и Шерк предложили уменьшить размер струн так, чтобы они давали гравитационную силу правильной величины, они, следовательно, предложили также увеличить натяжение струн — в любых вариантах это приводит к натяжению около тысячи триллионов триллионов триллионов (1039) т, что примерно в 100000000000000000000000000000000000000000 (1041) раз больше натяжения обычной фортепианной струны. Теперь, если вы захотите изогнуть крохотную, чрезвычайно жёсткую струну одним из всё более сложных способов, как показано на рис. 12.4, вы поймёте, что чем больше имеется пиков и впадин, тем больше энергии вы должны передать струне. И наоборот, если струна вибрирует таким замысловатым образом, она содержит гигантское количество энергии. Таким образом, все способы колебаний струны, кроме простейших, являются очень высокоэнергетическими, и поэтому, благодаря формуле E = mc2, соответствуют частицам с гигантскими массами.
[242]
Связь с массой, возникающей из Хиггсова океана, будет обсуждаться в этой главе позже.
{243}
Поскольку даже слабо колеблющаяся струна имеет некоторое количество энергии, вы можете поинтересоваться, как это возможно для колебательной моды струны давать безмассовую частицу. Ответ снова связан с квантовой неопределённостью. Независимо от того, насколько спокойна струна, квантовая неопределённость означает, что она имеет некоторое минимальное количество дрожаний и ряби. И благодаря волшебству квантовой механики эти индуцированные неопределённостью колебания имеют отрицательную энергию. Когда это объединяется с положительной энергией от самых слабых из обычных колебаний струны, полная материя/энергия оказывается равной нулю.