Добавить в цитаты Настройки чтения

Страница 36 из 150

Обобщенный третий закон Ньютона, утверждая равенство работ взаимодействия (энергий связи), ни слова не говорит о действующих силах и пройденных путях. Это можно трактовать и так, что для процессов взаимодействия важны только работы и энергии и не существенны силы и пути. Такое понимание в принципе не исключает возможности несоблюдения равенства сил действия и противодействия, если окажутся неодинаковыми пройденные пути, которые пребывают в прямой зависимости, например, от хода реального физического времени на взаимодействующих телах. Таким образом, особую ценность полученного результата надо видеть в том, что он в принципе позволяет нарушать третий закон механики Ньютона. Все эти вопросы более подробно и наглядно излагаются в гл. XXI, где находятся необходимые и достаточные условия для такого нарушения - посредством управления ходом времени.

Из обобщенного третьего закона Ньютона также следует, что порции веществ (ансамбли, тела) удерживаются друг подле друга не силами, ибо сила есть мера качества поведения тел в процессе их сближения или отдаления (то есть в процессе совершения работы) и после прекращения этого процесса в телах не остается, а энергией (соответствующее понятие энергии связи в свое время было выработано в физике). Что касается собственно третьего закона Ньютона, то он справедлив в том случае, когда при равенстве работ оказываются равными между собой также пройденные пути. Вместе с тем равенство по абсолютной величине сил действия и противодействия еще не может служить основанием для утверждения, что тела удерживают друг друга силами (такую терминологию нередко можно встретить в механике) [ТРП, стр.131-132].

 6. Нелинейность дифференциальных уравнений ОТ.

В законах структуры и ее симметрии обращает на себя внимание удивительно симметричная, простая и удобная форма записи соответствующих дифференциальных уравнений. По-видимому, только такая форма и способна наиболее эффективно отразить все многообразие существующих в природе явлений структурной симметрии. Однако симметричная форма основных уравнений может навести на неверную мысль о том, что в них каждое данное свойство (Р , А , В , С , D  и т.д.) линейно (в первой степени) зависит от всех экстенсоров и свойств более высоких порядков, а сами уравнения являются линейными дифференциальными уравнениями.

Действительно, надо отдавать себе ясный отчет в том, что эта линейность является кажущейся. На самом деле в общем случае обсуждаемые дифференциальные уравнения в частных производных с математической точки зрения далеко не линейны из-за тех связей, которые имеются между упомянутыми свойствами и экстенсорами. Чтобы в этом убедиться, достаточно подставить в уравнения (54) значения свойств А , В  и  С  из выражений (55), (56), (73), (74), (80) и (81) и принять во внимание, что приращения аргументов (экстенсоров) в действительности зависят от приращений интенсиалов. Это последнее обстоятельство выясняется при выводе уравнения пятого начала ОТ. В результате множители при производных от неизвестных функций  ?  содержат сами эти неизвестные функции и уравнения оказываются нелинейными.

Следовательно, симметричная (по виду линейная) форма записи уравнений еще не означает линейности самих уравнений. Благодаря существенной нелинейности дифференциальных уравнений математический аппарат ОТ приобретает исключительные гибкость и универсальность [21, с.55]. Это замечание в равной мере относится к уравнениям всех семи начал ОТ.

Принятая симметричная форма записи уравнений не случайна. Она потребовалась для того, чтобы специально выделить в уравнениях те их части, то есть те свойства А , В , С , D  и т.д., которые подчиняются законам симметрии структуры типа (86), (88), (89) и т.д. При другой форме записи было бы значительно труднее установить эти законы [ТРП, стр.133].

 7. Идеальная система.

Нелинейные дифференциальные уравнения ОТ становятся линейными лишь в отдельных частных случаях, например когда свойства  А  в уравнениях типа (54) оказываются величинами постоянными, при этом структуры В , С , D  и т.д. обращаются в нуль. Систему, обладающую такими свойствами, будем называть идеальной.

Существует много различных определений понятия идеальной системы, из них логически оправданными можно считать два. Первое предполагает отсутствие в системе трения. Это понимание сыграло в науке свою положительную роль. Однако такого рода идеализация большого интереса для нас не представляет, ибо в ОТ сформулирован всеобщий закон диссипации - седьмое начало, поэтому пренебречь трением значит пренебречь одним из важнейших законов природы, то есть вместе с водой выплеснуть из ванны и ребенка.

Второе определение к идеальным относит системы, у которых физические коэффициенты типа А , К  и т.д. не зависят от экстенсоров и, следовательно, являются величинами постоянными. Именно такое определение мы будем использовать в качестве основного. Преимущество его заключается в том, что математический аппарат исследования предельно упрощается, вместе с тем все главные свойства системы, характеризуемые началами ОТ, не выпадают из поля зрения исследователя. Этого рода идеализация является значительно более общей и важной для теории и практики, чем первая; в частности, она позволяет крайне упростить изучение реальных систем с трением. Вторая идеализация, как и начала ОТ, может быть применена к любому количественному уровню мироздания (нано-, микро-, макро- и т.д.) и любому агрегатному состоянию системы (твердому, жидкому, газообразному).

Разумеется, в действительности не существует идеальных систем, они являются предельной абстракцией. Однако в первом приближении допущение о постоянстве свойств типа А , К  и т.д. сделать часто возможно. Возникающая в расчетах ошибка будет тем меньше, чем ближе реальная система подходит по своим свойствам к идеальной.

В качестве простейшего примера проинтегрируем дифференциальное уравнение состояния (54) применительно к идеальной системе (А = const; n = 2). Имеем





  Р1 = А11Е1 + А12Е2      (92)

  Р2 = А21Е1 + А22Е2

где

   А12 = А21

Постоянные интегрирования положены равными нулю, так как при  Е = 0  интенсиал системы  Р = 0, что прямо следует из свойств парена (см. параграф 1, гл. XVII).

В  условиях одной степени свободы   (A = const; n = l)   из дифференциального уравнения  (58)  с учетом равенства  (60) получаем

Р = АЕ ;   Е = КР      (93)

Из уравнений (92) видно, что каждый интенсиал зависит от всех полных экстенсоров системы, при этом сохраняется симметрия во взаимном влиянии степеней свободы. Из выражения (93) следует, что у идеальной системы интенсиал пропорционален экстенсору, например, электрический потенциал пропорционален электрическому заряду, температура - энтропии, сила - деформации (закон Гука), момент силы - углу закручивания и т.д.; в трех последних примерах использованы не истинно простые, а условно простые экстенсоры (см. параграфы 5, 9 и 16 гл. XV) [ТРП, стр.133-135].

Глава ХI. Пятое начало ОТ.

1. Состояние и перенос.

Продолжим анализ интенсиала  Р , входящего в основное уравнение (31) для ансамбля простых явлений и представляющего собой специфическую меру интенсивности силового взаимодействия вещества. Это позволит обнаружить следующее - пятое - важнейшее свойство, одновременно присущее также всем явлениям, находящимся на более высоких уровнях эволюционного развития.

Из закона состояния должно быть ясно, что в готовом ансамбле интенсиал характеризует интенсивность, напряженность, активность поведения сопряженного с интенсиалом вещества. Эта активность сохраняется в течение всего времени существования системы в данном состоянии и реализуется в ходе изменения этого состояния.