Добавить в цитаты Настройки чтения

Страница 81 из 131

* Одна из гипотез появления рода Homo основывается на данных о действии такого реактора в районе южноафриканского уранового месторождения Окло. Процентное содержание урана-235 в руде Окло немного снижено, откуда делают вывод, что в этом месте глины случайно повысили концентрацию урана раз в 100, а это создало условия для течения ядерных реакций, и часть урана-235 выгорела. Видимо, реактор в Окло работал более полумиллиона лет. Важнейшее обстоятельство связано с тем, что геологические условия, ведущие к появлению богатых урановых месторождений, а значит, с какой-то вероятностью и естественных реакторов, как раз соответствуют области древнейших стоянок предчеловека. Гипотеза "африканской прародины" сильно поддерживается тем, что именно в экваториальных областях Африки обнаружены ближайшие к человеку эволюционные линии семейства гоминид - шимпанзе и гориллы. Палеонтологические данные свидетельствуют о наличии общих предков 20-25 млн. лет назад. С этим пока расходятся результаты молекулярной антропологии, исследующей различия наследственного вещества. Интенсивные работы последних лет в этом направлении обнаружили исключительную близость гоминоидных ДНК - с точки зрения генетической программы все три высших вида земных существ отличаются друг от друга в пределах 1 - 2 %, а их общие предки должны были подвергнуться решающему мутационному удару не более 5 млн. лет назад. Вероятно, это определяет предельно высокий темп эволюции, и очень правдоподобно, что самые активные мутагенные факторы - радиационные сыграли здесь решающую роль, как и в последующем отделении рода Homo.

Однако нет оснований отказываться от своеобразного закона, согласно которому природа всегда стремится реализовать наиболее сложные формы организации вещества, допустимые в данных условиях. Поэтому мы обычно верим, что, если вблизи звезды типа Солнца сформировались планеты с параметрами, очень близкими к земным, то и основные этапы химической и биологической эволюции должны выглядеть очень схоже.

Другой вопрос - значительное разнообразие в эволюционных путях самих планет. В доступных прямому исследованию условиях Солнечной системы Земля включается в целую группу тел наряду с Меркурием, Венерой, Марсом и Луной, чей исходный состав, а отчасти и этапы формирования довольно схожи. Но при всем том, Меркурий и Луна лишены атмосферы. Атмосфера Венеры, геологическое строение которой очень близко к земному, почти в 50 раз плотнее земной, температура у поверхности достигает 500 градусов, а давление - 90 атмосфер. Но самое важное - различие в составах. Если земная атмосфера, грубо говоря, состоит из азота и кислорода (в пропорции 78:21), то венерианская атмосфера - смесь углекислого газа с азотом (примерно 95:4). В той степени, в какой мы считаем третичную атмосферу Земли "искусственной", то есть обязанной своим происхождением фотосинтетическому производству кислорода прокариотами и более сложной растительностью, можно утверждать, что ничего подобного на Венере не происходило, во всяком случае, организмы, потребляющие углекислоту и производящие кислород, сколь-нибудь заметного развития там не получили*.

*Нечто похожее можно заключить и насчет Марса, средняя приповерхностная температура которого меньше 0о С, а давление примерно в 170 раз ниже земного. Состав его крайне разреженной атмосферы (в 5000 раз менее плотной, чем на Венере) очень похож на венерианский - в основном углекислый газ, азот и аргон (в пропорции примерно 95 : 3 : 2).

Еще более разительно Земля отличается от больших планет. Дело не только в простом отличии таких параметров, как радиус и масса Юпитера и Земли. За существенно иной массой (МЮп/ М( = 318) кроется совершенно иной ход эволюции. Исходным материалом юпитерианского протопланетного облака послужил водород и гелий, что неплохо отражается в составе его нынешней атмосферы (примерно 87 частей водорода на 13 частей гелия). Фактически Юпитер - "недоразвитая звезда", окажись его исходная масса раз в 10 больше, мы имели бы счастье стать обитателями двойной звездной системы. По современным расчетам, юпитерианское протопланетное облако было примерно в 1000 раз больше современного Юпитера, и его светимость достигала почти 1024 Вт (т. е. нескольких десятых процента от современной светимости Солнца!). Переход в наблюдаемое состояние за счет гравитационного сжатия произошел довольно быстро - примерно за 10 млн. лет. Но и теперь Юпитер, сжимаясь на 10 сантиметров за столетие, обеспечивает высокое избыточное излучение. Его судьба позволяет понять, что происходит с протооблаком недостаточно высокой массы, неспособным войти в режим термоядерного реактора. Под водородно-гелиевой атмосферой толщиной порядка 1400 км, располагается океан жидкого водорода "глубиной" около 16 тысяч километров (в нем могла бы легко потонуть Земля). Когда давление достигает 3 млн. бар, водород переходит твердую фазу. Толщина сферической оболочки из металлического водорода более 43 тыс. километров, наконец, в центре располагается относительно небольшое (R ~ 11 тыс. км) ядро из горных пород. Очень похожим строением, видимо, обладает и Сатурн.

Разумеется, было бы нелепо ожидать от планет такого рода сколь-нибудь похожей на земную химико-биологической эволюции. Тем более трудно предположить нечто подобное для слишком далеких от Солнца Урана и трансурановых планет.

В целом современная точка зрения сводится к тому, что ни на одной из планет Солнечной системы не может существовать жизни земного образца. Уникальность земной жизни неплохо объясняется положением протоземного облака относительно центрального светила и исходным химическим составом этого облака, хотя в схеме объяснения наверняка есть немало весьма дискуссионных мест. Конечно же, конденсация силикатно-железной пыли массой порядка М( на расстоянии порядка одной астрономической единицы от желтого карлика не ведет к однозначному выводу о появлении там через 4-5 миллиардов лет разумных существ, но зато ни на одном из этапов такой эволюции не видно пока слишком невероятных событий, разрывающих рассмотренную цепочку.





ЗООГОНИЧЕСКАЯ ФАЗА КАК КОСМОЛОГИЧЕСКИЙ ЗАКОН

Хотя мы вовсе не уверены, что появление жизни во Вселенной представляет собой столь же универсальное явление, как образование галактик, звезд и планетных систем, необходимо тем или иным образом задать этот феномен как закономерное следствие предшествующих стадий эволюции.

Последовательность событий, приводящая к зарождению и развитию жизни, представляется чем-то вроде цепочки реакторов.

Самый мощный из них - Сингулярность (или, вероятней всего, ее планковская окрестность) - работает не слишком понятным для нас образом, но в результате работы этого гравитационного суперреактора появляется пространство-время и зародыши будущих элементарных частиц (а возможно, и непосредственно некоторые частицы - фотоны, лептоны, кварки и гравитоны, если не выяснится их более тонкая структура). В эпоху t ~ 10-6-10-5 сек. Вселенная начинает работать как реактор адронного синтеза - из кварков образуются адроны. Позднее, в более холодной ситуации Вселенная становится термоядерным реактором, осуществляющим синтез водорода в гелий-4.

Еще позднее Вселенная разбивается на отдельные реакторы (галактики и звезды первого поколения), где в процессе сжатия происходит синтез более тяжелых элементов. Благодаря выходу этих реакторов во взрывной режим, космос химически обогащается, и некоторые не слишком горячие объекты, например, планеты у звездных систем 2-го поколения - становятся мощными химическими реакторами, где синтезируются различные молекулярные соединения. Когда химические соединения делаются достаточно сложными и многообразными, возникает основа для дальнейшего усложнения структур. В относительно тонком приповерхностном слое некоторых планет создается своеобразный биологический реактор, продуцирующий относительно устойчивые молекулярные комплексы, способные к длительному обмену энергией и веществом с окружающей средой. Если условия этого обмена, способствующие устойчивости комплекса, каким-то образом кодируются в его структуре (в виде информации, записанной на молекулярном уровне), то комплексы начинают репродуцироваться в наиболее приспособленной к данным условиям форме. Вариация условий окружающей среды - радиационного, температурного и химического режимов по необходимости приводит либо к гибели образований, либо к их усложнению, допускающему более широкую адаптацию. Так появляются первые живые существа - безъядерные клетки, способные в некоторой степени регулировать отношения с окружающей средой.