Страница 119 из 130
Ф. используется при исследовании напряжений в механических конструкциях, расчёт которых слишком сложен. Исследование двойного лучепреломления под действием нагрузок в выполненной из прозрачного материала модели (обычно уменьшенной) изучаемой конструкции позволяет установить характер и распределение в ней напряжений (см. Поляризационно-оптический метод исследования ). Ф. лежит в основе взаимодействия света и ультразвука в твёрдых телах.
Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976; Дитчберн Р., Физическая оптика, пер. с англ., М., 1965; Фрохт М. М., Фотоупругость, пер. с англ., т. 1–2, М. – Л., 1948–50; Физическая акустика, пер. с англ., т. 7, М., 1974, гл. 5; Александров А. Я., Ахметзянов М. Х., Поляризационно-оптические методы механики деформируемого тела, М., 1973.
Э. М. Эпштейн.
Фотофильм
Фотофи'льм, фильм (обычно короткометражный), состоящий из неподвижных фотографий. Метод Ф., занимающий промежуточное положение между киноискусством и фотоискусством , получил некоторое распространение к середине 20 в. (например, «Взлётная полоса» французского режиссер К. Маркера, 1962).
Фотоформа
Фотофо'рма, негатив или диапозитив , используемый в процессе изготовления печатной формы (см. Глубокая печать , Офсетная печать ).
Фотохимический реактор
Фотохими'ческий реа'ктор , устройство в виде стеклянного или кварцевого сосуда, предназначенное для проведения химических реакций, протекающих под действием света (искусственного или солнечного). Используется в промышленных установках по производству различных веществ и материалов (например, в установках для нитрозирования циклогексана в процессе производства капролактама ). См. также Солнечная фотосинтетическая установка .
Фотохимия
Фотохи'мия, раздел химии, в котором изучаются реакции химические , происходящие под действием света. Ф. тесно связана с оптикой и оптическими излучениями . Первые фотохимические закономерности были установлены в 19 в. (см. Гротгуса закон , Бунзена – Роско закон ). Как самостоятельная область науки Ф. оформилась в 1-й трети 20 в., после открытия Эйнштейна закона , ставшего основным в Ф. Молекула вещества при поглощении кванта света переходит из основного в возбуждённое состояние, в котором она и вступает в химическую реакцию. Продукты этой первичной реакции (собственно фотохимической) часто участвуют в различных вторичных реакциях (т. н. темновые реакции), приводящих к образованию конечных продуктов. С этой точки зрения Ф. можно определить как химию возбуждённых молекул, образовавшихся при поглощении квантов света. Часто более или менее значительная часть возбуждённых молекул не вступает в фотохимическую реакцию, а возвращается в основное состояние в результате различного рода фотофизических процессов дезактивации. В ряде случаев эти процессы могут сопровождаться испусканием кванта света (флуоресценция или фосфоресценция). Отношение числа молекул, вступивших в фотохимическую реакцию, к числу поглощённых квантов света называются квантовым выходом фотохимической реакции. Квантовый выход первичной реакции не может быть больше единицы; обычно эта величина значительно меньше единицы из-за эффективной дезактивации. Вследствие же темновых реакций общий квантовый выход может быть значительно больше единицы.
Наиболее типичная фотохимическая реакция в газовой фазе – диссоциация молекул с образованием атомов и радикалов. Так, при действии коротковолнового ультрафиолетового (УФ) излучения, которому подвергается, например, кислород, образующиеся возбуждённые молекулы O2 * диссоциируют на атомы:
O2 + h n , ® O + O.
Эти атомы вступают во вторичную реакцию с O2 , образуя озон: O + O2 ® O3 .
Такие процессы происходят, например, в верхних слоях атмосферы под действием излучения Солнца (см. Озон в атмосфере ).
При освещении смеси хлора с насыщенными углеводородами (RH, где R – алкил) происходит хлорирование последних. Первичная реакция – диссоциация молекулы хлора на атомы, за ней следует цепная реакция образования хлор углеводородов:
Cl2 + h n ® ® Cl + Cl
Cl + RH ® HCl + R
R + Cl2 ® RCl + Cl и т.д.
Общий квантовый выход этой цепной реакции значительно больше единицы.
При освещении ртутной лампой смеси паров ртути с водородом свет поглощается только атомами ртути. Последние, переходя в возбуждённое состояние, вызывают диссоциацию молекул водорода:
Hg* + H2 ® Hg + H + H.
Это пример сенсибилизированной фотохимической реакции. Под действием кванта света, обладающего достаточно высокой энергией, молекулы превращаются в ионы. Этот процесс, называемый фотоионизацией, удобно наблюдать с помощью масс-спектрометра.
Простейший фотохимический процесс в жидкой фазе – перенос электрона, т. е. вызванная светом окислительно-восстановительная реакция. Например, при действии УФ света на водный раствор, содержащий ионы Fe2 + , Cr2 + , V2 + и др., электрон переходит от возбуждённого иона к молекуле воды, например:
(Fe2 + )* + H2 O ® Fe3 + + OH- + Н + .
Вторичные реакции приводят к образованию молекулы водорода. Перенос электрона, который может происходить при поглощении видимого света, характерен для многих красителей. Фотоперенос электрона с участием молекулы хлорофилла представляет собой первичный акт фотосинтеза – сложного фотобиологического процесса, происходящего в зелёном листе под действием солнечного света.
В жидкой фазе молекулы органических соединений с кратными связями и ароматическими кольцами могут участвовать в разнообразных темновых реакциях. Кроме разрыва связей, приводящего к образованию радикалов и бирадикалов (например, карбенов ), а также гетеролитических реакций замещения, известны многочисленные фотохимические процессы изомеризации , перегруппировок, образования циклов и др. Существуют органические соединения, которые под действием УФ света изомеризуются и приобретают окраску, а при освещении видимым светом снова превращаются в исходные бесцветные соединения. Это явление, получившее название фотохромии, – частный случай обратимых фотохимических превращений.
Задача изучения механизма фотохимических реакций весьма сложна. Поглощение кванта света и образование возбуждённой молекулы происходят за время порядка 10-15 сек. Для органических молекул с кратными связями и ароматическими кольцами, представляющих для Ф. наибольший интерес, существуют два типа возбуждённых состояний, которые различаются величиной суммарного спина молекулы. Последний может быть равен нулю (в основном состоянии) или единице. Эти состояния называются соответственно синглетными и триплетными. В синглетное возбуждённое состояние молекула переходит непосредственно при поглощении кванта света. Переход из синглетного в триплетное состояние происходит в результате фотофизического процесса. Время жизни молекулы в возбуждённом синглетном состоянии составляет ~ 10-8 сек; в триплетном состоянии – от 10-5 –10-4 сек (жидкие среды) до 20 сек (жёсткие среды, например твёрдые полимеры). Поэтому многие органические молекулы вступают в химические реакции именно в триплетном состоянии. По этой же причине концентрация молекул в этом состоянии может стать столь значительной, что молекулы начинают поглощать свет, переходя в высоковозбуждённое состояние, в котором они вступают в т. н. двухквантовые реакции. Возбуждённая молекула А* часто образует комплекс с невозбуждённой молекулой А или с молекулой В. Такие комплексы, существующие только в возбуждённом состоянии, называются соответственно эксимерами (AA)* или эксиплексами (AB)*. Эксиплексы часто являются предшественниками первичной химической реакции. Первичные продукты фотохимической реакции – радикалы, ионы, ион-радикалы и электроны – быстро вступают в дальнейшие темновые реакции за время, не превышающее обычно 10-3 сек.