Страница 21 из 190
Основатель электронной теории Лоренц сформулировал уравнения, описывающие элементарные электромагнитные процессы. Эти уравнения, называемые Лоренца – Максвелла уравнениями , связывают движение отдельных заряженных частиц с создаваемым ими электромагнитным полем.
Опираясь на представления о дискретности электрических зарядов и уравнения для элементарных электромагнитных процессов, можно распространить методы статистической механики на электромагнитные процессы в веществе. Электронная теория позволила вскрыть физический смысл электромагнитных характеристик вещества e, m, s и дала возможность рассчитывать значения этих величин в зависимости от частоты, температуры, давления и т.д.
Частная (специальная) теория относительности. Релятивистская механика.
В основе частной теории относительности – физической теории о пространстве и времени при отсутствии полей тяготения – лежат два постулата: принцип относительности и независимость скорости света от движения источника. Согласно принципу относительности Эйнштейна, любые физические явления – механические, оптические, тепловые и т.д. – во всех инерциальных системах отсчёта при одинаковых условиях протекают одинаково. Это означает, что равномерное и прямолинейное движение системы не влияет на ход процессов в ней. Все инерциальные системы отсчёта равноправны (не существует выделенной, «абсолютно покоящейся» системы отсчёта, как не существует абсолютных пространства и времени). Поэтому скорость света в вакууме во всех инерциальных системах отсчёта одинакова. Из этих двух постулатов вытекают преобразования координат и времени при переходе от одной инерциальной системы к другой – Лоренца преобразования. Из преобразований Лоренца получаются основные эффекты частной теории относительности: существование предельной скорости, совпадающей со скоростью света в вакууме с (любое тело не может двигаться со скоростью, превышающей с, и с является максимальной скоростью передачи любых взаимодействий); относительность одновременности (события, одновременные в одной инерциальной системе отсчёта, в общем случае не одновременны в другой); замедление течения времени и сокращение продольных – в направлении движения – размеров тела (все физические процессы в теле, движущемся со скоростью v относительно некоторой инерциальной системы отсчёта, протекают в раз медленнее, чем те же процессы в данной инерциальной системе, и во столько же раз уменьшаются продольные размеры тела). Из равноправия всех инерциальных систем отсчёта следует, что эффекты замедления времени и сокращения размеров тел являются не абсолютными, а относительными, зависящими от системы отсчёта.
Законы механики Ньютона перестают быть справедливыми при больших (сравнимых со скоростью света) скоростях движения. Сразу же после создания теории относительности были найдены релятивистские уравнения движения, обобщающие уравнения движения механики Ньютона. Эти уравнения пригодны для описания движения частиц со скоростями, близкими к скорости света. Исключительно важное значение для Ф. получили два следствия релятивистской механики: зависимость массы частицы от скорости и универсальная связь между энергией и массой (см. Относительности теория ).
При больших скоростях движения любая физическая теория должна удовлетворять требованиям теории относительности, т. е. быть релятивистски-инвариантной. Законы теории относительности определяют преобразования при переходе от одной инерциальной системы отсчёта к другой не только координат и времени, но и любой физической величины. Эта теория вытекает из принципов инвариантности, или симметрии в Ф. (см. Симметрия в физике).
Общая теория относительности (теория тяготения). Из четырёх типов фундаментальных взаимодействий – гравитационных, электромагнитных, сильных и слабых – первыми были открыты гравитационные взаимодействия, или силы тяготения. На протяжении более двухсот лет никаких изменений в основы теории гравитации, сформулированной Ньютоном, внесено не было. Почти все следствия теории находились в полном согласии с опытом.
Во 2-м десятилетии 20 в. классическая теория тяготения была революционным образом преобразована Эйнштейном. Теория тяготения Эйнштейна, в отличие от всех прочих теорий, была создана без стимулирующей роли новых экспериментов, путём логического развития принципа относительности применительно к гравитационным взаимодействиям, и получила название общей теории относительности. Эйнштейн по-новому интерпретировал установленный ещё Галилеем факт равенства гравитационной и инертной масс (см. Масса ). Это равенство означает, что тяготение одинаковым образом искривляет пути всех тел. Поэтому тяготение можно рассматривать как искривление самого пространства-времени. Теория Эйнштейна вскрыла глубокую связь между геометрией пространства-времени и распределением и движением масс. Компоненты т. н. метрического тензора, характеризующие метрику пространства-времени , одновременно являются потенциалами гравитационного поля, т. е. определяют состояние гравитационного поля. Гравитационное поле описывается нелинейными уравнениями Эйнштейна. В приближении слабых полей из них вытекает существование гравитационных волн, пока не обнаруженных экспериментально (см. Гравитационное излучение ).
Гравитационные силы – самые слабые из фундаментальных сил в природе. Для протонов они примерно в 1036 раз слабее электромагнитных. В современной теории элементарных частиц гравитационные силы не учитываются, т.к. полагают, что они не играют заметной роли. Роль гравитационных сил становится решающей при взаимодействиях тел космических размеров; они определяют также структуру и эволюцию Вселенной.
Теория тяготения Эйнштейна привела к новым представлениям об эволюции Вселенной. В середине 20-х гг. А. А. Фридман нашёл нестационарное решение уравнений гравитационного поля, соответствующее расширяющейся Вселенной. Этот вывод был подтвержден наблюдениями Э. Хаббла , открывшего закон красного смещения для галактик (означающий, что расстояния между любыми галактиками увеличиваются с течением времени). Др. пример предсказания теории – возможность неограниченного сжатия звёзд достаточно большой массы (больше 2–3 солнечных масс) с образованием т. н. «чёрных дыр» . Имеются определённые указания (наблюдения за двойными звёздами – дискретными источниками рентгеновских лучей) на существование подобных объектов.
Общая теория относительности, как н квантовая механика, – великие теории 20 в. Все предшествующие теории, включая специальную теорию относительности, обычно относят к классической Ф. (иногда классической Ф. называют всю неквантовую Ф.).
Квантовая механика.
Состояние микрообъекта в квантовой механике характеризуется волновой функцией y. Волновая функция имеет статистический смысл (Борн, 1926): она представляет собой амплитуду вероятности, т. е. квадрат её модуля, êyê2 , есть плотность вероятности нахождения частицы в данном состоянии. В координатном представлении y = y(х, у, z, t ) и величина êyê2 Dx Dy Dz определяет вероятность того, что координаты частицы в момент времени t лежат внутри малого объёма Dx Dy Dz около точки с координатами х, у, z. Эволюция состояния квантовой системы однозначно определяется с помощью Шрёдингера уравнения .
Волновая функция даёт полную характеристику состояния. Зная y, можно вычислить вероятность определённого значения любой относящейся к частице (или системе частиц) физические величины и средние значения всех этих физических величин. Статистические распределения по координатам и импульсам не являются независимыми, из чего следует, что координата и импульс частицы не могут иметь одновременно точных значений (принцип неопределённости Гейзенберга); их разбросы связаны неопределённостей соотношением . Соотношение неопределённостей имеет место также для энергии и времени.