Добавить в цитаты Настройки чтения

Страница 13 из 19

Интегрируем это уравнение, беря от обеих его частей после разделения переменных соответствующие определенные интегралы. При этом нижним пределом каждого из интегралов будет значение переменной интегрирования в начальный момент, а верхним – в произвольный момент времени.

Учитывая, что при t = 0, v = v0, записываем:

Беря интегралы, получаем:

Откуда:

Определяя время движения до остановки, из равенства (4.32) найдем, что при v=0 (остановкатела) время t = ?. Это означает, что при принятом законе сопротивления движению (4.26) тело теоретически будет двигаться бесконечно долго, все время уменьшая свою скорость.

Однако из практики известно, что тело рано или поздно все равно остановится, причем не исключено, что оно может сдвинуться и назад. В чем же здесь дело? А в том, что, во-первых, при чрезвычайно малых скоростях движения закон сопротивления может измениться. Во-вторых, могут измениться свойства жидкости – она может остыть и замерзнуть, покрыться тиной и т. д. Тогда будет действовать какой-то новый закон сопротивления движению тела. Но он нам не задан, а согласно принятому закону сопротивления (4.26), тело будет двигаться уже описанным образом.

Интересно определить путь, который пройдет тело до остановки. Можно предположить, что если тело никогда не остановится, то и пройденный им путь за бесконечно большое время будет тоже бесконечно большим.

Проверим и это. Применим уже известную нам формальную подстановку (см. вопрос 4.8) и составим дифференциальное уравнение движения в виде:

Сокращая обе части его на v, разделяя переменные и учитывая, что при х = 0 v = v0, имеем:

Интегрируя, получаем:

откуда:

или при v = 0:

То есть получаем вполне конкретное значение пути. Например, при массе тела 100 кг, скорости v0 = 1 м/с и ? = 10 кг/с (средний коэффициент сопротивления для обычной лодки), получаем путь движения до остановки х = 10 м. Если проверять эту задачу экспериментально, то так примерно оно и получится. Хоть движение и «вечное», а вот пройденный путь вполне конечен.





Вот к каким неожиданным выводам приводит иногда механика!

4.10. Вопрос. Что такое трение качения?

Ответ. Казалось бы, такое обыденное явление – трение при качении, а ответа – что это такое, по крайней мере, поясняющего сущность вопроса, в школьных учебниках нет. Даже для школ с углубленным изучением физики. Про теорию относительности – есть, а про трение качения, встречающееся, буквально, на каждом шагу – нет. И, может быть, это к лучшему, потому что даже в вузовских учебниках по физике, где рассматривается этот вопрос, ясности все-таки нет. А ведь трение качения – очень важный для техники вопрос, оно обнаруживает себя в любом колесном транспорте, начиная от велосипеда и роликовых коньков и заканчивая многотонными тягачами и поездами, а кроме того, в механических передачах, подшипниках качения и во многих других случаях.

Между тем, объяснить хотя бы в первом приближении – что это такое, не так уж сложно. И одним из этих приближений будет то, что опорную поверхность или дорогу, по которой катится колесо, будем считать абсолютно твердой. Второе допущение, которое совершенно реально: опорная поверхность и поверхность колеса обладают трением скольжения, предельное значение которого превышает максимальное сопротивление качению колеса. Короче говоря, при приложении к оси колеса силы, оно будет катиться, а не скользить «юзом» по дороге. Иногда говорят, что рассматриваемые поверхности «шероховаты», но это недостаточно точно отражает суть вопроса. Трудно представить себе, например, что-нибудь более гладкое, чем зеркальная рабочая поверхность плиток Иогансона, применяющихся для точных измерений расстояний в качестве эталонов длины, но попробуйте сдвинуть одну такую плитку по другой!

А теперь поставим колесо на дорогу, приложим к нему силу тяжести G, нормальную силу со стороны дороги N и будем толкать колесо силой Р, приложенной горизонтально к оси, пытаясь его покатить. Мешает ли нам теоретически что-нибудь это сделать? Нет, все силы пересекаются в точке выхода оси колеса, и моменты, создающие сопротивление качению, не могут образоваться (рис. 22).

Рис. 22. Схема сил, действующих при качении абсолютно твердого колеса по абсолютно твердой дороге.

Получается парадокс – выходит, при качении нет никакого сопротивления? Но заметьте, что мы совершенно не учли деформацию колеса, оно у нас как бы «абсолютно твердое», тверже алмаза. Тогда, конечно, сопротивления качению быть не может, с учетом того, что дорогу мы уже приняли абсолютно твердой. Поэтому, чтобы уменьшить сопротивление трению качения, колёса и железную дорогу делают из очень твердых материалов (не из алмаза, конечно, но из термообработанной стали с наклепом – очень твердого материала). Железнодорожные колеса, катящиеся по рельсам, имеют сопротивление качению во много раз меньше, чем «мягкие» автомобильные колеса.

Что же происходит с «мягким» колесом при его качении? В контакте с дорогой его немного расплющивает, и из-за гистерезисных потерь (перехода части механической энергии, затраченной на деформацию, в тепло, что всегда имеет место в реальных материалах) сила давления на колесо со стороны дороги N немного смещается вперед по движению (рис. 23). Появляется плечо силы а, то есть момент, который надо преодолевать, а значит, и трение качения. Чем больше диаметр колеса и чем тверже оно (при твердой дороге), тем меньше оно сопротивляется качению. Вот почему у некоторых вездеходов колеса такие большие (до 17 м диаметром), а у поездов и трамваев они такие твердые.

Рис. 23. Схема сил, действующих на реальное колесо, катящееся по абсолютно твердой дороге.

А вот легковому автомобилю нельзя «позволить себе» ни того, ни другого. Если колеса будут слишком большими, автомобиль утратит мобильность, комфортабельность, эргономичность и эстетичность, а кроме того, станет слишком тяжелым. Ну, а твердые колеса будут резать асфальт, как сошедший с рельсов трамвай, да и тряска при движении станет непереносимой – мягкие шины демпфируют колебания от неровностей дороги. Вот и приходится идти на технические компромиссы.

И еще одно обстоятельство, которое вызывает недоумение у каждого, кто пытается проанализировать качение упругого колеса по твердой дороге. Нижняя часть колеса расплющивается, и ее длина становится меньше соответствующей дуги недеформированного колеса. Зная, что окружная скорость точки на ободе шины равна произведению угловой скорости колеса на радиус колеса, мы видим, что этот радиус в точке контакта с дорогой меньше, чем рядом, где колесо не касается дороги. Получается, что окружная скорость разных точек колеса – различная? Если у одной и той же шины скорость в разных точках различная, то это означает или разрыв шины, или напротив – ее сжатие.

Именно сжатие и происходит в контакте колеса с дорогой – упругая поверхность шины сжимается, проскальзывает к центру зоны контакта, а при выходе из контакта происходит обратная картина. В передней зоне контакта колеса с дорогой силы трения скольжения при проскальзывании действуют со стороны дороги на колесо назад по движению, а в задней зоне их действие противоположно. Кроме того, что это скольжение создает потери (переход механической энергии в тепло), увеличивающие сопротивление качению, силы эти играют еще одну отрицательную роль. В передней зоне контакта, где давление выше из-за смещения вперед силы N, эти силы больше, чем в задней. И это, в свою очередь, опять же повышает сопротивление качению колеса.