Добавить в цитаты Настройки чтения

Страница 7 из 39



Витасфера, входящая структурно в биосферу, существенно отличается от основной массы биосферы как по составу, так и по энергетике. Витасфера представляет собой оболочку планеты, где совершается основная биогеохимическая работа ныне живых организмов, где дается старт длительным во времени и пространстве биогеохимическим циклам миграции веществ в биосфере планеты.

Элементарной структурной единицей витасферы является биогеоценоз (понятие, введенное В. Н. Сукачевым). Биогеоценоз представляет собой участок территории или акватории, однородной в топографическом, микроклиматическом, биоценотическом, почвенном, гидрологическом и геохимическом отношениях. Биогеоценоз — это естественноисторическое тело природы, оно объемно и неоднородно в физическом отношении, состоит из твердой, газовой и жидкой фаз, а также особой фазы — живого вещества.

Биогеоценоз включает в себя определенное сообщество организмов, почву, почвенно–грунтовую воду и нижние слои тропосферы. Реальные размеры биогеоценозов на планете варьируют в широких пределах: от нескольких метров (микрозападины в степях и полупустынях, березовые колки, песчаные дюны и т. д.) до нескольких километров (солончак, такыр, однородные участки степи, леса). Каждому биогеоценозу присущ свой круговорот вещества и определенный характер трансформации потоков солнечной энергии, функция которых — формирование биопродукции. Нарушение качественных или количественных характеристик круговорота веществ или трансформации энергии неизбежно ведет к изменению качественной структуры биопродуктивности (нарушение синтеза витаминов, аминокислот, ферментов и т. д.). Если круговорот веществ в биогеоценозе начинается и зависит от фотосинтеза растений, то управляющая система биогеоценоза сосредоточена в почве. Миллиарды почвенных микроорганизмов, грибов, актиномицетов, низших и высших почвенных животных осуществляют там постоянно с заданной ритмичностью грандиозный процесс разрушения и преобразования прижизненных метаболитов растений или их опада и ресинтез нового класса биоорганических веществ (гумус, антибиотики и т. д.).

Энергия, поступающая в почву с биоорганическими веществами, перераспределяется по различным структурам и компонентам почвы: пленочная, гигроскопическая и другие виды почвенной влаги, кристаллические решетки вторичных почвенных глинистых минералов, синтез гумуса и т. д. Изучение круговорота веществ и трансформации энергии в биогеоценозах только начато. Пока лишь можно предполагать, что равновесное (стационарное) состояние биогеоценозов в природе достигается за счет оптимизации круговорота вещества и потоков энергии в нем. Надежность работы биогеоценоза, этой сложной системы прямых и обратных связей между его звеньями, зависит от уровня и надежности работы почвенных организмов по деструкции (разрушению) и реутилизации метаболитов высших растений. Биогеоценозы и витасфера в целом — это энергетический и информационный мотор биосферы, задающий тип ее организованности.

Таким образом, при изучении биогеоценозов как открытых систем, способных к саморегуляции в течение длительного времени, особое внимание следует обратить на исследования почвы как динамической системы, определяющей надежность и длительность функционирования биогеоценоза. Конечным этапом подобных работ должна быть расшифровка механизмов управления биогеоценотическим процессом в природе, прогноз векторов и темпов этого процесса в разных зонах и ландшафтах и формулировка предпосылок к созданию научной концепции ведения хозяйства на биогеоценотической основе. Это означает эффективное использование биологических ресурсов лишь в размере “процента с оборота” веществ в биогеоценозах будущего. Создание биогеоценозов, работающих с высоким кпд и значительной надежностью в открытой или замкнутой среде, станет возможным после детального изучения механизмов управления в природе в комбинации с экспериментальным и математическим моделированием частных процессов в биогеоценозе и особенно в почвах.

Биосфера — хранилище памяти геологической истории планеты, “написанной” взаимодействием живого вещества с неживым. Главные действующие лица этой истории — биокосные системы (почвы и биогеоценозы), а ее “исполнители” — исторически меняющиеся сообщества (биоценозы) различных видов организмов.

Геологическая история планеты начинается с захвата фотосинтетиками лучистой энергии Солнца, с помощью которой осуществляется синтез высокомолекулярных соединений, богатых энергией. Жизнь была бы невозможна, если бы планету не обтекал солнечный луч — постоянный, непрерывно действующий и неисчерпаемый источник энергии. Вбирая в себя солнечную энергию, биосфера заряжает планету энергией, повышая ее энергетический потенциал. Непрерывность и неисчерпаемость солнечной энергии определяет непрерывность геологической истории планеты. Таков “вход” в биосферу. Все последующее определяется вступлением синтезированных живым веществом химических соединений в геохимический круговорот вещества в биосфере.



Наиболее простой путь изучения круговорота веществ в биогеоценозах — это изучение судьбы определенных химических элементов, их концентрирования или рассеивания в различных компонентах биогеоценоза (почвах, растениях, микрофлоре, газовой фазе биогеоценоза, животных организмах, водах и т. д.). Основной метод такого исследования состоит в зольном анализе компонентов биогеоценозов, по результатам которого сначала получают статическую картину распределения, а затем дедуктивным путем воссоздают картину круговорота веществ как динамического процесса.

О значении биологического круговорота веществ в природе наука “заговорила” после появления учения немецкого химика Юстуса Либиха о минеральном питании растений. Послелибиховский период изучения круговорота веществ стал периодом интенсивного накопления данных по зольному составу растений, а следовательно, более полного представления о балансе питательных веществ в земледелии. Накопление данных позволило глубже проникнуть во взаимоотношения растительности и почв и соответственно поставить на научную основу применение удобрений. И все же зольный анализ не может дать полной картины круговорота: нельзя правильно решить вопрос о количестве минеральных веществ, вовлекаемых в биологический круговорот, по одному анализу “трупов”. Нужно также изучать сезонные колебания обмена веществ между живой вегетирующей растительностью и почвой. Иначе говоря, нужно учесть огромное количество питательных веществ, ферментов и шлаков, перемещаемых растениями в ходе их жизнедеятельности. Суммарная масса веществ, участвующих в прижизненных процессах поглощения и выделения за все время жизни организма, во много раз превышает биомассу самого организма.

Строго говоря, понятие биологического круговорота веществ применимо лишь для биологических процессов метаболизма, протекающих внутри того или иного живого организма (отток веществ из одних органов в другие и обратно, через биолиты и т. п.), то есть на организменном уровне, поэтому изучение его — это область биологии (физиологии, биохимии и т. д.).

Не все этапы круговорота веществ в биогеоценозах осуществляются при прямом участии живых организмов; некоторые стадии протекают под действием абиогенных факторов (механические, физические и химические воздействия). Такое сочетание обеспечивает возникновение, по выражению Вернадского, “вихрей атомов”, составляющих характернейшую черту функционирования биосферы и ее структур. Исследование подобного (биогенного) круговорота — задача биогеоценологии.

Наряду с биологическим и биогенным круговоротом следует выделять биогеохимический круговорот (собственно биосферный), определяющий миграцию химических элементов в биосфере в целом. Здесь также определяющую роль в передвижении и перераспределении химических элементов играет живое вещество, но при этом из круговорота изымается и откладывается огромное количество химических элементов, главным образом в зоне геохимических барьеров (залежи угля, нефти, бокситов, известняков и т. п.). Изучение биогеохимического круговорота химических элементов в биосфере и их биогеохимических циклов относится к области биогеохимии.