Добавить в цитаты Настройки чтения

Страница 57 из 140



Теперь обсудим цитоскелет. Цитоскелет состоит из нескольких компонентов. Там есть микротрубочки, я их упоминал, когда обсуждал фагоцитоз.

Микротрубочки полностью соответствуют своему названию. Это прямые микроскопические трубочки (наружный диаметр 28 нм, внутренний — 14 нм), состоящие из двух похожих друг на друга белков а-тубулина ("альфа-тубулин") и Ь-тубулина ("бета-тубулин"). Два конца микротрубочки отличаются друг от друга некоторыми важными свойствами (их называют "+" и "-"-концы). В ДНК клетки имеются два разных гена, содержащие информацию о последовательностях аминокислот а-тубулина и b-тубулина. После синтеза на рибосомах в цитоплазме молекулы а- и b-тубулина объединяются в димеры ("ди" — "два", "мерос" — "часть"). Димеры тубулина при определенных условиях могут присоединяться к "+"-концу микротрубочки, микротрубочка при этом удлиняется. С "-"-конца микротрубочки могут разбираться (то есть от него отделяются димеры тубулина, и микротрубочка при этом укорачивается). Изменяя условия в разных частях цитоплазмы, клетка имеет возможность делать сеть микротрубочек в ней более или, наоборот, менее густой. Кроме того, есть белки, способные присоединяться к "+"-концам микротрубочек, прекращая тем самым их сборку, и другие белки, способные присоединяться к "-"-концам и прекращать разборку микротрубочек (вместе они называются "кэпирующие белки").

Известны специальные транспортные белки, способные перетаскивать по микротрубочкам различные органоиды клетки. Один из них, кинезин, переносит их в направлении от "-"-к "+"-концу.

Следующий момент связан с тем, что если какие-то белки портятся, то такая конструкция гарантирует от того, что испортится вся микротрубочка. Если где-то возник разрыв белковой цепочки, то этот белок не присоединиться к плюс-концу или каким-то образом будет удален, или вся микротрубочка разберется. То есть так решается задача, как избавляться от испорченных молекул. Естественно, все макромолекулы в клетке постепенно портятся. И часть конструкций клетки ориентирована на удаление испорченных молекул. Например, в цитоплазме клетки есть ферменты — гидролазы, которые расщепляют белки. У всех белков, находящихся в цитоплазме, концы цепочки аминокислот спрятаны внутрь белковой глобулы. В норме они не торчат наружу. Если появился кончик, значит возник разрыв. И такой белок будет уничтожен, расщеплен на отдельные аминокислоты, которые потом можно опять использовать. И это правильно, так как белок испорчен. Похожая ситуация с нуклеиновыми кислотами — они как правило защищены от разрушения.

Из микротрубочек состоят центриоли. Центриоль — это цилиндр, состоящий из девяти троек микротрубочек. На поверхности цилиндра находятся белковые конструкции, которые служат центрами организации микротрубочек. Они обладают способностью создавать короткие участки микротрубочек из димеров тубулина. И каждому короткому участку дальше могут присоединяться димеры тубулина, и от центриоли в разные стороны расходятся микротрубочки. Это существенно при митозе. Так что центриоль служит центром организации микротрубочек.

Схема строения центроли.

Центриоль состоит из 9 триплетов микротрубочек, причем каждый триплет содержит одну полную микротрубочку (а) и две примыкающие к ней неполные микротрубочки (Ь и с). Особые белки образуют поперечные сшивки, поддерживающие цилиндрическую структуру.

Справа — центриоли клеточного центра. МЦ и ДЦ материнская и одочерние центриоли: МТ микротрубочки: ФСНТ фокусы схождения микротрубочек.

Центриоль является также основанием ундулиподии, они же жгутики или реснички. Это характерный органоид, которые, видимо, также как митохондрии и хлоропласты, имеет симбиогенное происхождение. Были некоторые симбиотические бактерии, которые постепенно превратились в ундулиподии.





Есть два варианта того как работают реснички. Есть два варианта работы ундулиподии. Один вариант, который называется ресничка, делает взмах, поверхность, к которой она прикреплена, получает толчок. Начальный участок реснички при этом становится мягкой и начинает сгибаться. Ресничка работает (делает эффективный удар) в одной плоскости.

У протистов (у инфузорий) ресничка иногда может совершать так называемый реверс, то есть бить в обратную сторону. В любом случае движение означает, что для того, чтобы животное двигалось в определенную сторону, все реснички должны быть ориентированы своими плоскостями в одну и ту же сторону. Действительно, так и есть. На теле планарии, например, они ориентированы в одну сторону.

Другой вариант — это жгутик. В этом случае кончик ундулиподии двигается по кругу. При этом в зависимости от того, как изогнута сама нить жгутика, жгутик может быть тянущим или толкающим. На рис. Показан вариант толкающего и тянущего жгутика.

Сама по себе нить закручена в спираль, витки которой перемещаются — обычно от основания к кончику жгутика. В результате в зависимости от того, как соотносится направление вращения и направление закрученности спирали, жгутик или «ввинчивается» в воду или как бы «вывинчивается».

У некоторых простейших бывает промежуточный вариант, когда ундулиподия работает как жгутик, но описывает при этом фигуру не круг, а сильно вытянутый овал.

Как устроена эта конструкция внутри. На срезе реснички видны девять пар микротрубочек. При этом в центре имеются еще две микротрубочки, соединенные некими связками и окруженные цилиндром из белка нексина. Это называется центральный цилиндр, от каждой пары микротрубочек центрального цилиндра отходит спица, которая тоже состоит из белка нексина.

Кроме того, каждая пара имеет «ручки» — выросты, состоящие из белка динеина, который обладает способностью, потребляя АТФ, присоединяться к соседней микротрубочке и создавать разность высот между парами микротрубочек. В результате, когда из 9 пар микротрубочек срабатывают динеиновые «ручки» примерно на половине, то какие-то пары микротрубочек поднимаются выше, а какие-то — опускаются. Жгутик сгибается, происходит взмах. Примерно так работает ундулиподии, которые используется при движении простейших.

Основной белок другой части цитоскелета — микрофиламентов — называется актин. Глобулы актина (называемого в этом состоянии г-актин) способны объединятся в нити, представляющие собой двойные спирали, соединенные между собой. Получается двойная спираль с двумя желобками. Есть большое количество белков, влияющих на архитектуру этой системы нитей. Есть белки, которые соединяют вместе случайно коснувшиеся нити, есть белки, которые слепляют их в пучки, и разные другие другие. Один из белков, регулирующих структуру нитей, называется тропомиозин. Он тоже образуется в виде глобул и формирует нити. Дальше эти нити укладываются в два желобка на нитях f-актина. Есть еще один белок, называется тропонин, который состоит из трех субъединиц. Одна субъединица связывается с f-актином, вторая способна связываться с тропомиозином, а третья обладает способностью обратимо связывать кальций. При наличии ионов кальция в растворе смесь субъединиц соединяется. Если убрать кальций, то кальций отделяется и все возвращается в исходное состояние. Такой филамент, состоящий из этих трех белков, в присутствии кальция будет переходить в другое состояние, при котором тропонин, удлинившись, будет вытаскивать из желобков нити тропомиозина. В результате при наличии кальция желобки будут открываться, а если кальций из среды убрать — закрываться. Зачем это нужно, сейчас объясню.