Добавить в цитаты Настройки чтения

Страница 97 из 119

А вот лягушка, отравленная хлороформом. Все рефлексы у лягушки исчезли. Она, как тряпка, не отвечает на раздражения. Отпрепаровываем n. ischiadicus. При раздражении его электричеством получаем обычный эффект сокращения, но более слабый. Рефлексов, значит, у этой лягушки нет, а при прямом раздражении нерва сокращение получается. Очевидно, у лягушки какая-то часть, входящая в рефлекторную дугу, парализована. Но мы видим, что периферическая часть действует, следовательно парализована только центральная часть.

Надо вам сказать, что хлороформ есть протоплазматический яд, и если он применяется в большой дозе, то он отравляет все, парализует все клетки. Но все-таки можно поставить опыт так, что никакого повреждения периферической нервной ткани не будет, а рефлексы, несмотря на это, будут отсутствовать.

Итак, вы видели два противоположных состояния. У одной лягушки вся рефлекторная деятельность повысилась, а у другой исчезла. При этом испытания показали, что периферическая нервная система не изменилась; значит, все изменения произошли в центральной нервной системе. Вот грубая иллюстрация того, что имеются основания резко различать физиологически периферическое звено рефлекторной дуги и центральное звено; иначе говоря, есть физиологическое различие между периферическими волокнами и нервными клетками.

Затем, детальное исследование показало существенную разницу между функциями и свойствами центра и периферических нервов. Я вам укажу на несколько таких свойств. Но прежде отмечу вот что. Нервный процесс гораздо более инертен в нервной клетке, чем в волокне. Нервное возбуждение быстро уходит из нервного волокна, а в нервной клетке оно остается надолго. Это сказывается и в отношении к раздражителям. Если вы раздражаете нервное волокно коротким по времени раздражителем, то вы можете получить эффект. Короткого возбуждения достаточно для того, чтобы нерв на него реагировал. А если вы раздражитель такого же короткого протяжения приложите к нервной клетке, то она по своей инертности может и не ответить на раздражение. В связи с этим находится и то, что, в то время как процесс возбуждения из волокна быстро исчезает, тот же нервный процесс, вызванный в нервной клетке, остается в ней очень долго: минуты, часы, дни, а то и годы. Итак, хотя в нервной клетке процесс не скоро может быть вызван, но зато - раз он произошел, то он останется в ней на долгое время. Иллюстрацию такой большой инертности нервной клетки по сравнению с волокнами мы вам покажем, применяя в качестве раздражителя индукционный ток.

Если вы индукционным током, который дает короткие раздражения в момент замыкания и размыкания тока, будете действовать на двигательный нерв, то таких коротких толчков будет достаточно, чтобы всякий раз вызвать сокращение мышц. Если же вы теми же индукционными ударами будете действовать на чувствительный нерв, то вы каждым отдельным ударом рефлекторного действия не вызовете. Удары должны быть повторены несколько раз, чтобы произошел рефлекс. Один удар очень быстр. а нервная клетка слишком инертна и не успевает придти в возбуждение. Но вследствие той же инертности от вашего короткого раздражения след все-таки сохранился в клетке. Второй удар тоже не успеет произвести эффекта, но он прибавится к первому остатку раздражения. И вот, если вы пустите 5 -10 ударов, эти остатки, следы, прибавляясь к прежним, в своей суммации, нахонец, дадут такое накопление нервного возбуждения в нервных клетках, которого будет достаточно, чтобы выразиться в известном нервном процессе и в видимом эффекте.

Для того чтобы убедиться в этом, делается очень простой опыт. У лягушки с отрезанным головным мозгом окружают проволокой одну из лап и затем в первичной спирали индукционной катушки замыкают метрономом через известные промежутки электрический ток. Мы сейчас этот опыт сделаем, будем раздражать лапу лягушки отдельными, отставленными на известное время индукционными ударами.

Вы увидите, что при каждом ударе произойдет сокращение соответствующей лапы. Этот индукционный толчок попадет на центробежные элементы и сейчас же вызовет сокращение. Но никаким общим движением лягушка не ответит. Удары должны будут повториться несколько раз, чтобы лягушка, наконец, прыгнула. Из этого вам совершенно ясно противоположение между периферическими и центральными нервными элементами.





Вы понимаете, что инертность нервной клетки есть чрезвычайно важное свойство центральной нервной системы. Чем выше мы будем брать нервные клетки, поднимаясь от спинного мозга к головному, тем больше будет повышаться и это основное свойство инертности клеток. Очевидно, что вся наша сложная психическая деятельность и основывается на такой инертности. Если бы у нервных клеток не было инертности, то мы жили бы секундами, моментами, у нас не было бы никакой памяти, не было бы никакой выучки, не существовало бы никаких привычек. Поэтому инертность надо считать самым основным свойством нервной клетки. Благодаря ей нервная внергия накапливается и удерживается от расхода до известного срока.

В связи с этим надо упомянуть другой факт, который до известной степени относится сюда же. Вы знаете из общей физиологии, что нервный процесс (энергия возбуждения), вызванный в известном пункте, движется по нервному волокну с определенной быстротой, - у лягушки с быстротой около 23 метров в секунду. Скорость, как видите, очень маленькая по сравнению со скоростью, например, световых или электрических волн. Такое свойство нервной ткани называется в физиологии проводимостью. Этот факт в свое время произвел огромное впечатление. Одно время воображали, что в нервной ткани процессы идут с неимоверной быстротой, которая «за пояс заткнет» быстроту электрических волн, световых и т. д. А в конце пятидесятых годов Гельмгольц (сперва физиолог, а потом физик и математик) измерил эту быстроту, и она оказалась много меньше, чем думали раньше. Итак, значит, у нервного волокна скорость 23 метра в секунду. А скорость движения того же нервного процесса возбуждения в центральной нервной системе во много раз меньше. Следовательно, можно считать, что проводимость нервной клетки отличается от проводимости нервных волокон.

Дальше следует сказать, что из всех элементов нервной системы сложный химизм отмечен больше всего в нервной клетке. В то время как химизм в нервном волокне и почти неуловим, химические процессы в нервной клетке сравнительно ясно выражены, что и понятно, так как нервная клетка выполняет трофическую функцию по отношению к своим отросткам.

Вернемся к нашему опыту. Лягушка подготовлена указанным выше образом. Замыкаем ток при помощи метронома. Всякий раз от действия тока на двигательный нерв получается два движения ноги: одно - в момент замыкания и другое - в момент размыкания тока, при опускании в ртуть прикрепленной к метроному проволоки и при поднимании ее. Двигательный нерв ноги отвечает на каждый отдельный удар, а общего рефлекса нет. Очевидно, короткого раздражения для нервной клетки мало. А вот, лягушка, наконец, прыгнула. Вы видите, что одного раздражения было мало; надо было, чтобы несколько раздражений суммировалось, скопилось, и тогда только лягушка прыгнула. Будем раздражать второй раз. Вот лягушка снова прыгнула, но прыжок последовал быстрее (от начала раздражения). Объясняется это тем, что в нервной системе сохранился остаток от предшествующих раздражений и новых раздражений теперь требуется уже меньше, чтобы вызвать общий эффект.

Я начал говорить вам, что в соответствии с более сложной деятельностью нервных клеток сравнительно с нервными волокнами оказывается, что и химические процессы, физиолого-химическая деятельность гораздо сложнервной клетке, чем в нервном волокне. Это обнаруживается многими опытами. Фибиолого-химический процесс в нервном волокне до такой степени мал и прост, что одно время казалось, что нервное волокно есть мертвая вещь, уподобляющаяся проводящей проволоке. Нервное волокно одно время считалось неутомляемым, так как утомляемость есть свойство живого вещества: живое вещество должно отдохнуть после работы. Утомляемость и раздражимость есть основные свойства живого вещества. А тут выходило, что нерв не утомляем, его можно раздражать часами и он будет раздражаться, как и раньше. Но дальнейшие исследования показали, что это не так, что и нерв есть живое вещество и его деятельность связана с разрушением, с известным химизмом. Но так как работа нерва чрезвычайно мала химические процессы в нем очень скудны, то кажется, что этих процессов там нет совсем. Различные опыты показали с несомненностью, что в нервном волокне химические процессы происходят и дают о себе знать. В то же время, наряду с этой, повидимому, неутомляемостью и нетребовательностью нервного волокна, известно, что утомляемость всей центральной нервной системы и требовательность ее в отношении питания чрезвычайно большие. Кто из вас не слыхал об обмороках? А ведь обморок основан на том, что имеется незначительное нарушение в питании нервной системы, какая-нибудь кратковременная остановка в кровообращении. И этой ничтожной остановки достаточно для того, чтобы деятельность центрального отдела нервной системы свелась на нет, пропали сознание и регуляция в отношении поддерживания скелета. Ясно, что в противоположность нервному волокну в центральной нервной системе происходит очень сложная и тонкая работа, требующая энергетических затрат. Стоит прекратить доставку питательного материала на секунды, и вы получите уклонение от нормы, обморок. То, что нерв не страдает от долгих нарушений в питании, вы уже видели. Я отпрепаровывал огромные куски нервов, отрывал их сосуды, держал нервы в руках, а они функционировали, как и раньше. Вот вам и разница. Тут, почти без всякого кровообращения в нерве (если я его отпрепарую) вы можете часами получать эффект. А в центральной нервной системе достаточно остановить кровообращение на секунду, чтобы ее нормальная деятельность прекратилась. Это самое обыденное наблюдение. А есть такой факт. Если зажать у кролика аорту и прекратить кровообращение, то сейчас же появится паралич всего зада. Так как результат этот нельзя отнести на счет периферических двигательных нервов, то очевидно, он зависит от участия спинного мозга.