Добавить в цитаты Настройки чтения

Страница 26 из 34



Все глубокие по мысли порождения, которые начиная с Возрождения стремительно следовали одно за другим, – мнимые и комплексные числа, введенные Кардано уже в 1550 г., бесконечные ряды, надежно обоснованные в плане теории великим открытием теоремы Ньютона о биноме, введенные ок. 1610 г. логарифмы, дифференциальная геометрия, открытый Лейбницем определенный интеграл, множество как новая числовая единица, намек на что имелся уже у Декарта, такие новые процессы, как неопределенное интегрирование, разложение функций в ряды, даже в бесконечные ряды других функций, – все это есть не что иное, как победы, одержанные над коренящимся в нас вульгарно-чувственным ощущением числа, которое следовало преодолеть исходя из духа новой математики с ее задачей воплощения нового мироощущения. Не было доныне второй такой культуры, которая окружала бы таким благоговением достижения другой, находилась бы под таким сильным ее влиянием в научном смысле, как это происходит с западной культурой по отношению к культуре античной. Много, очень много времени прошло, пока мы собрались с духом и стали пользоваться собственным мышлением. В основании этого лежало неизменное желание ни в чем не уступить античности. Тем не менее каждый шаг, делавшийся с этой целью, был на самом деле удалением от идеала, к которому стремились. Поэтому история западноевропейской науки представляет собой последовательное освобождение от античного мышления, – освобождение, которого никто вовсе и не желал, которое было навязано нам в глубинах бессознательного. Таким образом, развитие новой математики вылилось в негласную, долгую, увенчавшуюся в конце концов победой борьбу против понятия величины[55].

Ориентированные на античность предубеждения мешали нам по-новому обозначить собственно западное число как таковое. Язык символов современной математики замазывает этот факт, и прежде всего на его счет следует отнести то, что еще и сегодня также и среди математиков господствует убеждение в том, что числа – величины, ибо на этой предпосылке, разумеется, и основывается наш способ письменных обозначений.

Однако новым числом являются не служащие для выражения функции отдельные символы (х, π, 5), а сама функция как единство, как элемент, как переменное отношение, более не вмещающееся в оптические границы. Для него понадобился бы новый, не находившийся под влиянием античных воззрений формульный язык.

Необходимо давать себе ясный отчет, чем отличаются друг от друга два таких уравнения (уже само одно это слово не должно было бы одновременно обозначать столь разноплановые вещи), как 3x + 4x = 5x и хn + уn = zn (уравнение теоремы Ферма). Первое образовано несколькими «античными числами» (величинами), второе представляет собой число другого рода, что оказывается сокрытым тождественным способом записи, который развился под впечатлением евклидовско-архимедовских представлений. В первом случае знак равенства является констатацией жесткой связи определенных, доступных чувствам величин; во втором – он устанавливает существующую внутри группы переменных образований связь такого рода, что определенные изменения необходимо влекут за собой другие. Цель первого уравнения – определение (измерение) конкретной величины, «результата»; у второго вообще нет никакого результата, а является оно лишь отображением и знаком отношения, которое исключает целочисленные значения для п > 2 (это и есть знаменитая проблема Ферма), что, возможно, удастся доказать. Греческий математик вообще бы не взял в толк, какова собственно цель операций такого рода, вообще не направленных на «вычисление» как таковое.

Понятие неизвестного всецело сбивает с толку, если применить его к буквам уравнения Ферма. В первом, «античном», x является определенной и измеримой величиной, которую следует получить. Во втором слово «определить» для х, у, z и п вовсе не имеет никакого смысла, и, следовательно, мы не желаем получать «значения» этих символов, т. е. они вообще не являются числами в скульптурном смысле, а знаками такой взаимозависимости, у которой вообще отсутствуют такие черты, как величина, образ и однозначность, знаками бесконечности возможных положений одного и того же характера, которые становятся собственно числами, лишь будучи осознаны как единство. Все уравнение в целом, в символьной записи, которая, к сожалению, использует много вводящих в заблуждение символов, фактически является одним-единственным числом, и х, у, z являются ими столь же мало, как + и =.





Ибо понятие конкретного, определенного числа оказалось в глубочайшем своем основании уничтоженным уже с введением понятия иррационального, всецело антигреческого числа. Теперь эти числа образуют уже не обозримый ряд нарастающих, дискретных, скульптурных величин, но поначалу одномерный континуум, каждое сечение которого (в смысле Дедекинда) представляет «число», которому вряд ли стоило давать это старое обозначение. Для античного ума между 1 и 3 существует лишь одно число, для западного – их здесь бесконечное множество. Наконец, с введением мнимых ) и комплексных чисел (в общей форме а + bi), которые расширяют линейный континуум до в высшей степени трансцендентного образования числового тела (этого олицетворения множества однородных членов), каждое сечение которого является теперь числовой плоскостью (бесконечным множеством меньшей мощности, например совокупность всех действительных чисел), оказываются уничтожены все остатки антично-вульгарной осязаемости. Эти числовые плоскости, которые со времен Коши и Гаусса играют важную роль в теории функций, являются чисто умственными образованиями. Даже такое положительное иррациональное число, как , могло быть – хотя бы, так сказать, от противного – воспринято античным числовым мышлением, когда его, как ἄῤῥητος и ἄλογος [несказанное и несчетное, абсурдное (греч.)], исключали как число; но выражения в форме x + yi вообще находятся за пределами каких бы то ни было возможностей античного мышления. На распространении арифметических законов на всю область комплексных, внутри которой они постоянно применяются, основана теория функций, которая теперь наконец представляет западную математику в ее чистоте, поскольку она охватывает в себе все единичные области и их упраздняет. Лишь вследствие этого данная математика оказывается всецело применимой к образу одновременно развивающейся динамической физики Запада, между тем как античная математика представляет собой верное подобие того мира скульптурных единичных вещей, который теоретически и механически трактовала статическая физика от Левкиппа до Архимеда.

Классическим столетием этой барочной математики – в противоположность математике ионического стиля – явился XVIII в., который от решающих открытий Ньютона и Лейбница приводит через Эйлера, Лагранжа, Лапласа, Д’Аламбера к Гауссу. Бурный взлет этого мощного духовного творения происходил как чудо. Все едва отваживались на то, чтобы верить тому, что открывалось их глазам. Одна за другой отыскивались истины, представлявшиеся невозможными утонченным умам этой скептически настроенной эпохи. Это и имел в виду Д’Аламбер, сказав: «Allez en avant et la foi vous viendra» [Ступайте вперед, и обретете веру (фр.)]. Это относилось к теории дифференциала. Казалось, сама логика протестовала против того, чтобы основывать все предпосылки на погрешностях, и все же цель была достигнута.

55

То же самое может быть сказано и о римском праве, ср. с. 583 слл., и о монете, ср. с. 1034 сл.