Добавить в цитаты Настройки чтения

Страница 56 из 63

[3] David Alvarez-Ponce, James О. Mclnerney. The Human Genome Retains Relics of Its Prokaryotic Ancestry: Human Genes of Archae-bacterial and Eubacterial Origin Exhibit Remarkable Differences. Genome Biology and Evolution 3 (2011): 782—790. URL: https:// doi.org/10.1093/gbe/evr073.

Хотя сегодня этот взгляд ставится под сомнение, см.: Joran Martijn, Julian Vosseberg, Lionel Guy, Pierre Offre, T. J. G. Ettema. Deep Mitochondrial Origin Outside the Sampled Alphaproteobacterial. Nature 557 (2018): 101-105. Doi: 10.1038/s41586-018-0059-5.

[4] A. K. Tarkowski. Mouse Chimaeras Revisited: Recollections and Reflections. International Journal of Developmental Biology 42 (1998): 903-908.

[5] Ibid: 903-908.

[6] A. K. Tarkowski. Mouse Chimaeras Developedfrom Fused Eggs. Nature 190(1961):857-860.

[7] M. Maleszewski. Early Mammalian Embryo: My Love. An Interview with Andrzej K. Tarkowski. International Journal of Developmental Biology 52. Nos. 2—3 (2008): 163—169. Doi: 10.1387/ijdb.072377mm.

[8] R. Gardner. Chimaeric Mice on the Road Towards Stem Cells. Nature 414 (2001): 393. Doi: 10.1038/35106720.

[9] A

[10] N. M. Le Douarin, F. V. Jotereau. Tracing of Cells of the Avian Thymus Through Embryonic Life in Interspecific Chimeras. Journal of Experimental Medicine 142 (1975): 17—40.

[11] С. B. Fehilly, S. M. Willadsen, E. M. Tucker. Interspecific Chimaerism Between Sheep and Goat. Nature 307 (1984): 634—636.

[12] The Nobel Prize in Physiology or Medicine 2007. NobelPrize.org, accessed April 3, 2019. www.nobelprize.org/prizes/medicine/2007/ summary.

[13] J. Wu, A. Platero-Luengo, М. Sakurai, A. Sugawara, М. A. Gil, Т. Ya-mauchi, К. Suzuki, Y. S. Bogliotti, C. Cuello, M. Morales Valencia, D. Okumura, J. Luo, M. Vilarino, 1. Parrilla, D. A. Soto, C. A. Martinez, T. Hishida, S. Sanchez-Bautista, M. L. Martinez-Martinez, H. Wang, A. Nohalez, E. Aizawa, P. Martinez-Redondo, A. Ocampo, P. Reddy, J. Roca, E. A. Maga, C. R. Esteban, W. T. Beiggren, E. Nunez Delicado, J. Lajara, I. Guillen, P. Guillen, J. M. Campistol, E. A. Martinez, P. J. Ross, J. C. Izpisua Belmonte. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell 168 (2017): 473-486, el5. Doi: 10.1016/j.cell.2016.12.036; G. Almeida-Porada, C. D. Porada, J. Chamberlain, A. Torabi, E. D. Zanjani. Formation of Human Hepato-cytes by Human Hematopoietic Stem Cells in Sheep. Blood 104 (2004): 2582-2590. Doi: 10.1182/blood-2004-01-0259; X. Han, M. Chen, F. Wang, M. Windrem, S. Wang, S. Shanz, Q. Xu, N. A. Oberheim, N. L. Bekar, S. Betstadt, A. J. Silva, T. Takano, S. A. Goldman, M. Nedergaard. Forebrain Engraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice. Cell Stem Cell 12 (2013): 342-353. Doi: 10.1016/j.stem.2012.12.015; M. S. Windrem, S. J. Schanz, C. Morrow, J. Munir, D. Chandler-Militello, S. Wang, S. A. Goldman. A Competitive Advantage by Neonatally Engrafted Human Glial Progenitors Yields Mice Whose Brains Are Chimeric for Human Glia. Journal of Neuroscience 34 (2014): 16153-16161. URL: www. jneurosci.org/content/34/48/16153.

[14] K. Piotrowska-Nitsche, A. Perea-Gomez, S. Haraguchi, M. Zer-nicka-Goetz. Four-cell Stage Mouse Blastomeres Have Different Developmental Properties. Development 132 (2005): 479—490.

[15] K. Piotrowska-Nitsche, A. Perea-Gomez, S. Haraguchi, M. Zer-nicka-Goetz. Four-cell Stage Mouse Blastomeres Have Different Developmental Properties. Development 132 (2005): 479-490; K. Piotrowska-Nitsche, M. Zernicka-Goetz. Spatial Arrangement of Individual 4-cell Stage Blastomeres and the Order in Which They Are Generated Correlate with Blastocyst Pattern in the Mouse Embryo. Mechanisms of Development 122. No. 4 (2005): 487-500. Doi:10.1016/j.mod.2004.11.014.

[16] Piotrowska-Nitsche et al. Four-cell Stage Mouse Blastomeres, 479— 490; Morris et al. Developmental Plasticity Is Bound by Pluripotency, 756-765.

[17] Piotrowska-Nitsche, Zernicka-Goetz. Spatial Arrangement of Individual 4-Cell Stage Blastomeres, 487—500.

[18] Y. Kurotaki, K. Hatta, K. Nakao, Y. Nabeshima, T. Fujimori. Blastocyst Axis Is Specified Independently of Early Cell Lineage but Aligns with the ZP Shape. Science 316 (2007): 719—723. Doi: 10.1126/ science. 1138591.

[19] Richard L. Gardner. The Axis of Polarity of the Mouse Blastocyst Is Specified Before Blastulation and Independently of the Zona Pellucida. Human Reproduction 22. No. 3 (2007): 798—806. Doi: 10.1093/ humrep/del424.

[20] M. Bischoff, D.-E. Parfitt, M. Zernicka-Goetz. Formation of the Embryonic-Abembryonic Axis of the Mouse Blastocyst: Relationships Between Orientation of Early Cleavage Divisions and Pattern of Symmetric/Asymmetric Divisions. Development 135 (2008): 953—962. Doi:10.1242/dev.014316.





[21] M. E. Torres-Padilla, D. E. Parfitt, T. Kouzarides, M. Zernicka-Goetz. Histone Arginine Methylation Regulates Plan potency in the Early Mouse Embryo. Nature 445. No 7124 (2007): 214—218. Doi:10.1038/nature05458.

[22] Ibid.

[23] Fernando H. Biase, Xiaoyi Cao, Sheng Zhong. Cell Fate Inclination Within 2-Cell and 4-Cell Mouse Embryos Revealed by Single-Cell RNA Sequencing. Genome Research 24. No. 11 (2014): 1787—1796. Doi: 10.1101/gr. 177725.114; Junchao Shi, Qi Chen, Xin Li, Xiu-deng Zheng, Ying Zhang, Jie Qiao, Fuchou Tang, Yi Tao, Qi Zhou, Enkui Duan. Dynamic Transcriptional Symmetry-Breaking in Pre-implantation Mammalian Embryo Development Revealed by Single-Cell RNA-Seq. Development 142 (2015): 3468—3477. Doi:10.1242/ dev. 123950.

[24] Мубин Гулам, электронное письмо Роджеру Хайфилду, 17 сентября 2018 года; Мубин Гулам, интервью с Роджером Хайфилдом, 23 августа 2018 года.

[25] М. Goolam, A. Scialdone, S. J. L. Graham, I. С. Macaulay, A. Jedrusik, A. Hupalowska, Т. Voet, J. C. Marioni, M. Zernicka-Goetz. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos. Cell 165 (2016): 61-74. Dor 10 1016/i cell.2016.01.047.

[26] A. Jedrusik, D.-E. Parfitt, G. Guo, M. Skamagki, J. B. Grabarek, M. H. Johnson, P. Robson, M. Zernicka-Goetz. Role ofCdx2and Cell Polarity in Cell Allocation and Specification of Trophectoderm and I

[27] Goolam et al. Heterogeneity in Oct4andSox2 Targets, 61-74.

[28] M D. White, J. F. Angiolini, Y. D. Alvarez, G. Kaur, Z. W. Zhao, E. Mocskos, L. Bruno, S. Bissiere, V. Levi, N. Plachta. Long-Lived Binding of Sox2 to DNA Predicts Cell Fate in the Four-Cell Mouse Embryo. Cell 165 (2016): 75-87. Doi: 10.1016/j.cell.2016.02.032.

[29] Ibid.

[30] S. A. Morris, Y. Guo, M. Zernicka-Goetz. Developmental Plasticity Is Bound by Pluripotency and the Fgfand Wnt Signaling Pathways. Cell Reports 2. No. 4 (2012): 756-765.

[31] N. Plachta, T. Bollenbach, S. Pease, S. E. Fraser, P. Pantazis. Oct4 Kinetics Predict Cell Lineage Patterning in the Early Mammalian Embryo. Nature Cell Biology 13 (2011): 117-123. Doi: 10.1038/ncb2154.

[32] White et al. Long-Lived Binding of Sox2 to DNA, 75-87.

[33] 1. Tabansky, A. Lenarcic, R. W. Draft, K. Loulier, D. B. Keskin, J. Rosains, J. Rivera-Feliciano, J. W. Lichtman, J. Livet, J. N. Stern, J. R. Sanes, K. Eggan. Developmental Bias in Cleavage-Stage Mouse Blastomeres. Current Biology 23 (2013): 21-31. Doi: 10.1016/j cub.2012.10.054.

[34] Ibid.

Глава 6. Вскрытие черного ящика

[1] J. W. Lichtman, S. E. Fraser. The Neuronal Naturalist: Watching Neurons in Their Native Habitat. Nature Neuroscience 4 (2001): 1215-1220. Doi:10.1038/

[2] Insoo Hyun, Amy Wilkerson, Josephine Johnston. Embryology Policy: Revisit the 14-Day Rule. Nature 533 (2016): 169-171. URL: www. nature.com/news/embryology-policy-revisitthe- 14-day-rule-1.19838.