Страница 38 из 77
Задачи такого типа в течение долгого времени возникали только в астрономии и в некоторых областях механики.
Все изменилось после изобретения радио А. С. Поповым, точнее — после того, как на смену искровым радиопередатчикам пришли дуговые, а затем ламповые.
Инженеры должны были научиться рассчитывать ламповые радиопередатчики. Они сразу обнаружили, что характеристики радиоламп, отображающие зависимость электрического тока, протекающего через лампу, от напряжения, приложенного к ее управляющему электроду, не могут быть изображены прямыми линиями, а имеют вид сложных кривых. Первым преодолел эту трудность и добился успеха Бальтазар ван дер Поль. Он применил метод возмущения.
Быстрое развитие радиотехники потребовало от физиков изучения множества проблем, возникавших перед радиоинженерами, нуждавшимися в надежных методах расчета все более сложных схем радиопередатчиков и радио приемников. По-прежнему камнем преткновения были характеристики радиоламп, даже отдаленно не похожие на прямую линию. Вариант метода возмущений, примененный ван дер Полем, позволял решать многие радиотехнические задачи. Однако он обладал одним недостатком, хорошо известным астрономам. Этот метод не давал уверенности в том, что полученное решение действительно является близким к точному решению реальной неупрощенной задачи.
В это время в Московском университете набирала силу школа физиков, созданная Л. И. Мандельштамом и Н. Д. Папалекси. В центре интересов этих ученых и их учеников находилась разработанная ими Общая теория колебаний. Главная мысль, положенная в основу этой теории, заключалась в слове «общая». Дело в том, что Мандельштам еще в молодости установил глубокое единство, общность колебательных процессов, реализующихся в самых различных явлениях, приборах и машинах. Независимо от конкретной природы колебательных процессов, не имеющих с первого взгляда ничего общего между собой, они обладают глубокой внутренней общностью. Она выражается ярче всего и яснее всего тем, что они могут быть описаны одними и теми же математическими уравнениями, подчиняются этим уравнениям и их решениям. В качестве примера можно указать на качающийся маятник, на мячик, подпрыгивающий над твердым полом, на магнитную стрелку, колеблющуюся вокруг направления север — юг, на детскую игрушку, состоящую из тяжелого шарика, подвешенного на резинке, на птицу, только что опустившуюся на ветку и качающуюся вместе с ней. Каждый может придумать другие примеры. Если рассматриваемые в них колебания не слишком велики, то они обладают общими свойствами: скорость колеблющегося тела достигает наибольшего значения, когда его отклонение от положения равновесия равно нулю. В этот момент возрастание скорости прекращается и начинается ее уменьшение. Скорость достигает нуля, когда отклонение от положения равновесия максимально, безразлично в какую сторону — вправо или влево, вверх или вниз, но максимально.
Мандельштам подчеркивал, что сила Общей теории колебаний основана на глубоком единстве сущности колебательных процессов, выражающейся в том, что все родственные колебательные процессы могут быть описаны одним и тем же уравнением. Поэтому, говорил он, достаточно изучить один из колебательных процессов, решить это уравнение всего один раз. Полученные решения могут быть затем в готовом виде применены ко всем остальным колебательным явлениям и процессам, подчиняющимся этому же уравнению.
Конечно, общность не есть всеобщность. Существует много различных классов колебательных процессов, которые невозможно охватить одним уравнением. Например, стоит привязать к шарику, подвешенному на резинке, вторую резинку, удерживающую второй шарик, и их совместные колебания будут существенно отличаться от того, как они колеблются по отдельности. Соответственно будет отличаться и уравнение, описывающее колебания двух шариков, связанных между собой. Но и это новое уравнение применимо не только к описанию поведения сдвоенных шариков, но и к изучению многих аналогичных колебательных систем.
Подобных различных классов колебательных систем много. Но каждому из них принадлежит свое большое семейство процессов, обладающих между собой глубокой внутренней общностью. Конечно, каждый класс надо изучать отдельно, заново решая уравнение, описывают этот класс. Однако и при этом экономится много сил, времени и средств.
Главное преимущество состоит в том, что человек, овладевший Общей теорией колебаний, приобретает то, что Мандельштам называл колебательной интуицией, позволяющей судить о новом явлении на основании опыта, полученного при изучении многих других явлений.
Теперь нужно возвратиться к оговорке, сделанной в начале одного из предыдущих абзацев. Перечислив примеры родственных колебательных систем, мы начали следующий абзац фразой, содержащей условие: «…если рассматриваемые в них колебания не слишком велики, обладают общими свойствами».
Весьма неопределенное утверждение! Что значит «не слишком велики»? По сравнению с чем? Как определить «слишком» или «не слишком»?
Может быть, читатель уже сам задумался над тем, почему и зачем написана эта фраза. Ведь все содержание последующих фраз в этом абзаце не зависит от того, «слишком» или «не слишком».
Верно, читатель. Свойства, перечисленные в том абзаце, неизменны. Теперь пора поговорить о свойствах колебательных систем, сохраняющих общность, если их колебания не слишком велики, и теряющих эту общность при интенсивных колебаниях.
Прежде всего нужно условиться, чем различаются «слишком» и «не слишком».
Колебания можно считать «не слишком» интенсивными, если графики, изображающие любую характеристику этих колебаний, можно изобразить одной прямой линией. Например, зависимость отклонения положения маятника от величины внешней силы или зависимость силы тока приложенного напряжения. «Слишком» — если графики этих зависимостей сильно отличаются от прямой линии.
Это определение тоже не является точным или строим, но теперь ясно, что имеется в виду. Чем сильнее график отличается от прямой линии, тем менее общими оказываются свойства колебательных систем. Конечно, некоторая общность сохраняется, но различия увеличиваются. Ведь не отличаться от прямой линии можно только одним способом — отличаться так мало, что различие оказывается не существенным. Но отличаться можно на бесчисленное количество ладов. Кривая может пересекать прямую один раз, или несколько раз, или множество раз, пересекать круто или полого, и т. д. и т. п. (ведь нужно где-нибудь остановиться). И каждый раз свойства колебательной системы оказываются различными.
Так на основе линейной теории колебаний возникает нелинейная теория колебаний. Этим названием физики привыкли обозначать теорию, изучающую колебания систем, графики свойств которых (их характеристики) не могут быть изображены при помощи одной прямой линии. Здесь важно подчеркнуть слово «одной», потому что ломаная линия, состоящая из нескольких прямых, является непрямой, а кривой (а не прямой) линией.
Ламповый генератор, изученный ван дер Полем, обладал непрямой характеристикой. Поэтому его нельзя было изучить при помощи хорошо разработанных методов линейной теории колебаний. Отличия характеристики от прямой линии были существенными, именно эти отличия определяли замечательные особенности лампового генератора. Но характеристики были не настолько непрямы, чтобы воспрепятствовать применению метода возмущений. Это позволило ван дер Полю добиться успеха.
Зная о недостатке варианта метода возмущений, примененного ван дер Полем (этот недостаток не был профессиональной тайной астрономов или математиков), Мандельштам поручил своему аспиранту А. А. Андронову хорошо владевшему математикой, поискать в трудах математиков, занимавшихся проблемами астрономии, более подходящие варианты метода возмущений.
И Андронов нашел.
Новое притяжение, или Системы с короткой памятью
Собственно говоря, он нашел два метода, взаимно дополнявшие друг друга. Один из них был разработан французским математиком А. Пуанкаре, а второй казанским математиком А. М. Ляпуновым.