Страница 36 из 77
Почему механика разрешает углубляться в прошлое, а термодинамика запрещает это? — спрашивали они. И почему все же нельзя вернуться в прошлое? В этом следует разобраться. Что же более верно отображает природу термодинамика или механика?
То, что механика, вопреки опыту, допускает обращение времени, тревожило самого Ньютона. Но верный своему девизу, он не создавал гипотез для объяснения этой тайны. А опыт не давал даже намека на какую-либо скрытую причину. В конце жизни Ньютон сослался на бога. Бог подвигнул Ньютона на создание механики и ее уравнений. Весь мир подчиняется этим уравнениям. Но одних уравнений мало. Для того чтобы вычислять, необходимо еще знать начальные условия. Знать, с чего все началось. А начальные условия задал бог, и изменить их невозможно. Поэтому все движется от начала в будущее. До начала не было ничего. Так рассуждал в старости уставший Ньютон.
Не все соглашались с этим. Ученые, как и сам Ньютон в годы, когда был полон сил, крупные ученые — теоретики и экспериментаторы, в своих лабораториях и за своими письменными столами, — выступали и выступают как материалисты. Одни стихийно, неосознанно. Другие сознательно. Богу — божье, считают те из них, кто не порвал с религией, но науке — научное.
Ссылка на начальные условия ненаучна.
Ссылка на начальные условия может стать научной, считали некоторые, если подойти к ней с позиции науки.
Дальше всех по этому пути продвинулся Людвиг Больцман, крупнейший физик-материалист прошлого века. Сознательный и убежденный материалист.
Он доказывал: невозможно задать начальные условия абсолютно точно, а значит, невозможно и получить абсолютно точные решения уравнения. А исходя из неточных решений и изменив в уравнениях Ньютона течение времени, возможно прийти к исходным начальным условиям. Решения, полученные таким способом для нулевого момента времени, будут отличаться от тех начальных условий, которые были положены в основу решений. Так, повернув к прошлому, мы придем в будущее.
На деле, пояснял Больцман, ни один механический процесс нельзя описать совершенно точными уравнениями. Положите в лотерейное колесо слой белых шаров, а на него слой черных. Теперь вращайте колесо. Шары перемешаются. Бесполезно надеяться на то, что, повернув колесо обратно точно столько раз и точно с такой скоростью, с какой мы вращали его вперед, мы добьемся того, что из хаоса восстановится порядок, что шары снова улягутся слоями, как было вначале. Мельчайшие дефекты шаров и поверхности колеса не были учтены в уравнениях. Думая, что мы ведем опыт в обратном направлении, мы продолжаем идти вперед.
Значит ли это, что Больцман примирил термодинамику с механикой Ньютона, что их можно объединить или получить одну из другой? Отнюдь. Для термодинамики движение от прошлого к будущему имеет принципиальное значение. Запрет обратного движения от будущего к прошедшему является для термодинамики безусловным и нерушимым. Таково свойство природы. Это нужно принять как непреложный факт. Но объяснить, почему это так, оставаясь в границах термодинамики, невозможно.
Для механики движение во времени остается обратимым, во всяком случае, в принципе. Движение лишь в одном направлении следует из практической невозможности воспроизвести еще раз условия, существовавшие в начальный момент, в начале пути в будущее.
Для механики в принципе допустимо возвращение от хаоса к порядку. Лишь неучитываемые случайности мешают достичь этого без нарушения закона сохранения энергии, играющего в механике столь же важную роль, как в термодинамике.
Для термодинамики возвращение от хаоса к порядку является абсолютно запретным. Этот запрет воплощен во Втором начале термодинамики, в постулате, никак не связанном с законами механики.
Триединство
Теперь мы должны перешагнуть через четверть века, минуя открытие квантовых скачков, совершенное Планком, создание первого варианта квантовой механики, порожденной соединенными усилиями Эйнштейна и Бора, создание теории относительности, поставившее Эйнштейна в глазах людей рядом с Ньютоном.
Мы совершим скачок в начало двадцатых годов двадцатого века, когда три молодых гения создали то, что сперва называли новой квантовой механикой, то, что затем стало квантовой физикой, породило квантовую химию, вторглось в астрофизику и биологию, вырвалось из микромира в наш обычный мир с его металлами и диэлектриками, полупроводниками и сверхпроводимостью, привело к созданию новой техники и, увы, к появлению ядерного оружия.
Бакалавр по разделу истории Луи де Бройль начал свой путь в физику с диссертации, поразившей научный мир своим новаторством и блеском. В ней он вывернул наизнанку идею Эйнштейна, увязавшего в 1905 году световые волны с квантами света, частицами света, позже получившими наименование фотонов. Де Бройль связал микрочастицы (он рассматривал электроны) с особыми волнами, определяющими движение этих электронов. Не часто встречаются случаи, когда в диссертации создается новая наука. Здесь это произошло. Так родилась волновая механика.
Вскоре сказал свое слово Эрвин Шредингер. Он показал, что движение микрочастиц можно описывать привычным и хорошо изученным способом — при помощи дифференциальных уравнений. Конечно, для микромира пришлось написать новое уравнение. Позже его назвали волновым уравнением Шредингера.
В игру вступил третий гений — аспирант Макса Борна Вернер Гейзенберг. Он, перед тем как отправиться на побережье Балтийского моря, чтобы излечиться от сенной лихорадки, передал своему учителю текст статьи — в ней был изложен придуманный им способ вычислять результаты опытов с частицами микромира. Мудрый учитель сразу обнаружил, что ученик, подобно герою Мольера, не знает о том, что говорит прозой. То, что придумал Гейзенберг, было матрицами, давно известными математикам особыми таблицами, составленными из чисел или букв, таблицами, с которыми нужно обращаться в соответствии с правилами, установленными математиками. Но Гейзенберг не только придумал особые матрицы, но и установил, как эти матрицы связаны с явлениями микромира. Он создал матричную механику.
Вскоре оказалось, что эта тройка породила одно и то же. Каждый из них выразил сущность явлений микромира на особом, придуманном им языке. Так микромир предстал перед физиками в трех математических облачениях.
Восторг встретил победителей. Наконец была разгадана тайна воровских орбит, тех, по которым вращаются электроны в атомах. Новая квантовая механика одерживала победу за победой над самыми трудными задачами, над глубочайшими тайнами микромира.
Но эйфория длилась не долго. Гейзенберг запретил даже думать об этих орбитах. Он выдвинул удивительный принцип — принцип неопределенности. Из него следовало, что если известно точное положение электрона (или другой частицы микромира), то нельзя узнать ничего, ровно ничего, о его скорости. А если известно точное значение скорости, то нельзя ничего узнать о его местонахождении. Ясно, что при этих условиях становятся совершенно эфемерными воровские орбиты электронов в атоме Ведь при движении по орбите скорость частицы должна быть совершенно точно связана с ее положением. А принцип Гейзенберга состоит в том, что ни то ни другое не может быть определено безошибочно, так, чтобы погрешности обоих измерений оставались равными нулю после окончания измерений.
Так микромир, совсем недавно упорядоченный Бором и Зоммерфельдом, был вновь ввергнут в хаос. В ужасный хаос, хаос, страшный тем, что он принципиально неизбежен. Ведь было твердо установлено и многократно проверено, что нельзя отказаться от принципа неопределенности, не разрушив одновременно все здание квантовой физики, не утратив эту волшебную палочку, открывающую пути во все закоулки микромира.
Великий Лоренц, тот, которого называли последним представителем классической физики, говорил, что, если он должен рассуждать о движении электрона, ему необходимо представить себе, что в данный момент электрон находится во вполне определенном месте и движется с вполне определенной скоростью. Он признавал впечатляющие достижения квантовой физики, но не мог отказаться от привычной наглядности, пусть эта наглядность и является воображаемой. Точнее говоря, для того чтобы изучать какое-либо явление, ему казалось необходимым создать модель, мысленную модель, движущуюся в соответствии с законами механики Ньютона.