Добавить в цитаты Настройки чтения

Страница 20 из 64



В борьбе за точное время каждая крупица качества была на вес золота. И ученые ухитрялись добывать их из интимных различий родственных частиц. Например, протона и нейтрона. Они давно досадуют на то, что спектр излучения молекул аммиака очень сложен. И винят в этом ядро азота, входящего в аммиак. Это ядро состоит из семи протонов и семи нейтронов. Вот если бы там было их не семь, а восемь, говорят физики, все было бы иначе. Спектр был бы куда проще, и возни с молекулярным генератором было бы меньше.

И в этом действительно есть резон.

Возьмите для сравнения электронные оболочки атомов. Во внешних электронных оболочках атомов так называемых инертных газов всегда содержится по 8 электронов. Для атомов это идеал, большего им не нужно. Так возникает химическая инертность этих газов. Они не стремятся к соединению с другими элементами, довольные тем, что имеют. Если же во внешней электронной оболочке атома содержится только 7 электронов, атом стремится прихватить недостающий электрон у других элементов, что влечет за собой его большую химическую активность. Отсюда «жадность» галогенов, особенно фтора и хлора.

Как видно, нечто подобное присуще и атомным ядрам. Например, ядро кислорода, содержащее 8 протонов и 8 нейтронов, имеет очень упорядоченную структуру, отчасти напоминая этим симметричную электронную оболочку инертных газов. А вот ядро обычного азота, содержащее на один протон и один нейтрон меньше, чем кислород, уже в высшей степени несимметрично. Подобно электронной оболочке галогенов. Причина явно кроется в седьмых протонах и нейтронах, не имеющих пары внутри ядра. Ядро изотопного азота, содержащего наряду с семью протонами уже восемь нейтронов, гораздо симметричней, чем ядро обычного азота с его семью нейтронами. Ядро изотопного азота более похоже на симметричное ядро кислорода, чем на ядро обычного азота. Поэтому и спектр излучения молекул аммиака, содержащего не обычный, а изотопный азот, более прост, чем спектр аммиака, в который входит обычный азот.

И что самое поразительное — тонкие исследования вполне четко уловили разницу в работе молекулярного генератора, использующего простой аммиак или его изотоп. Они показали, что в результате даже столь ничтожного различия ядер молекулы аммиака, содержащие обычный азот или его изотоп, по-разному ведут себя в электрическом поле квадрупольного конденсатора. И это заметно сказывается на работе прибора. Так, ничтожные колебания напряжения, приложенного к сортирующему молекулы конденсатору, влияют на интенсивность пучка активных молекул обычного аммиака гораздо сильнее, чем в случае изотопного аммиака. Тот реагирует меньше. По-разному это сказывается и на частоте колебаний. Молекулярный генератор, работающий не на обычном, а на изотопном аммиаке, оказывается в 10–15 раз стабильнее. В 10 раз!

И эту десятку физики получили за счет одного лишнего нейтрона в ядре атома азота! Нейтрон — и десятикратное улучшение результатов. Никто, кроме физиков, даже химики, не может и мечтать отличить изотопный азот от обычного или аммиак с изотопным азотом от простого аммиака. Как глубоко должны были ученые проникнуть в глубины материи, чтобы чувствовать себя хозяином в атомном ядре!

Это все очень тонкие вещи, скрытые в ядрах атомов, но, поскольку ученые используют атомы как детали в своих новых приборах, необходимо во всех тонкостях знать строение и свойства этих деталей. Когда не работает большой прибор, его зачастую приходится разбирать до винтика. Атомные приборы приходится разбирать до нейтронов и протонов. Да еще делать это мысленно! Зато такие мысленные операции объясняют с первого взгляда непонятные капризы уникальных приборов. Так случилось и на этот раз.

И все-таки изотопный аммиак не решил всех проблем. Он очень дорог. Конечно, его можно применять в отдельных случаях, но для широкого распространения молекулярного генератора надо было найти другой метод увеличения его стабильности. К счастью, физики уже достаточно много знали о характере и склонностях объекта своего внимания, поэтому им пришлось искать недолго. Одна из множества спектральных линий обычного аммиака — та, которая имеет индекс (3, 2), — случайно обладает такой же простотой, что и спектральные линии дорогого изотопного аммиака. Ученые немедленно воспользовались этой находкой. Они изготовили резонатор, настроенный на частоту этой спектральной линии, и генератор заработал. Правда, при этом мощность генератора заметно уменьшилась, но стабильность частоты все же существенно возросла.

Физики здесь уподобились селекционерам, выводящим новый сорт. Те всегда взвешивают, что важнее — морозостойкость, продуктивность, вкус?

Физики стремились к большей стабильности. Они получили ее. А мощность в данном случае играет второстепенную роль. Молекулярные генераторы никогда и не претендовали на пьедестал сильнейшего. Борьба идет за точность работы, за точность отсчета времени, и началась она тогда, когда молекулярных генераторов не было и в помине.

ЛЮСТРА И АТОМ



Великий Галилей во время церковной службы обратил внимание на то, что одна из больших люстр собора качается, причем качается очень регулярно. Сравнив ритм ее колебаний с биением своего сердца, он убедился в том, что период движения люстры не зависит от ее размахов. Это побудило Галилея заняться изучением законов качания маятников. Он установил, что период маятника зависит от его длины. Из этих наблюдений родились маятниковые часы.

Вскоре Британское адмиралтейство объявило конкурс на часы, способные указывать точное время на борту корабля в условиях качки, — задача, недоступная маятниковым часам.

Премию получил Гюйгенс, более известный как создатель волновой теории света. Он изобрел вращающийся маятник с пружинкой — балансир, который тикает в миллионах хронометров, карманных и наручных часах.

Поколения часовщиков улучшали конструкцию часов, повышали их точность. Современные карманные и наручные часы лучших марок ошибаются не больше, чем на секунду в сутки. Морские хронометры отсчитывают время с погрешностью не более нескольких секунд в месяц. Специальные астрономические часы теперь снабжаются электрическим приводом, а их маятник качается в герметическом футляре, из которого откачан воздух. Ошибка таких часов не превышает одной секунды за год.

Это пока предел возможностей механических часов. Даже призвав на помощь электричество, механики не смогли продвинуться дальше в борьбе за точность отсчета времени.

Следующий шаг сделали радиоспециалисты. Это были А. Шайбе в Германии и Л. Эссен в Англии. Они создали кварцевые часы. Далеко не все здесь было новым. И до них радиоинженеры умели увеличивать стабильность частоты ламповых генераторов радиоволн, заменяя в них один из колебательных контуров пластинкой кварца. Но Шайбе не только научился делать очень хорошие кварцевые пластины, но соединил свой генератор со специальными радиосхемами, игравшими роль зубчатых передач в механических часах. Эти схемы преобразовывали высокую частоту колебаний кварцевого генератора в низкую частоту, пригодную для вращения маленького синхронного моторчика. Моторчик двигал стрелки, подобные стрелкам обычных часов. Кварцевые часы Эссена отличались, пожалуй, только тем, что он применял вместо кварцевых пластин — кольца, особым образом вырезанные из кристаллов кварца.

Кварцевые часы сразу превзошли лучшие маятниковые часы. Они работали так точно, что с их помощью удалось обнаружить неравномерность суточного вращения Земли. Это привело ученых ни больше ни меньше как к пересмотру представлений о роли часов!

Со времен Ньютона, знаменитые законы которого объединили астрономию с механикой, время стало таким же элементом науки, как пространство. Ученые исследовали движение небесных тел, работу механизмов — словом, все, с чем они имели дело в пространстве и во времени. Мир размещался в едином беспредельном пространстве, в котором подобно огромной реке текло единое время.

Три века в науке существовал строгий порядок, и почти три века люди не могли обнаружить ни малейшего отступления от этого порядка. Но в конце прошлого века Максвелл внес в учение об электричестве и магнетизме такую же ясность, как это сделал Ньютон для механики. Максвелл объединил учение о свете и. учение об электричестве. Из его теории следовала необходимость существования электромагнитных волн, длина которых в миллионы раз больше длины световых волн. Из его теории вытекало также существование эфирного ветра. Теория говорила, что эфир должен увлекать за собой электромагнитные волны так же, как воздушные потоки уносят с собой звук. Никто не думал тогда, что эфирный ветер унесет навсегда ньютоновское абсолютное время.