Добавить в цитаты Настройки чтения

Страница 19 из 64



Кстати, возможность такого коллективного состояния молекул еще раньше, без всякой связи с молекулярным генератором, предсказал американский ученый Р. Дики. Он назвал это состояние сверхизлучающим, так как стремление к излучению при этом зависит не от числа молекул, а от квадрата их числа, то есть растет очень быстро.

Молекулы, находящиеся в сверхизлучающем состоянии, могут излучать до тех пор, пока пучок не излучит всей запасенной в нем энергии! Такое излучение может наблюдаться и при полете молекул в свободном пространстве, только при этом оно будет происходить медленно. Если же пучок молекул, приведенный в сверхизлучающее состояние в первом резонаторе, попадет во второй резонатор, настроенный на подходящую частоту, то сверхизлучение произойдет очень интенсивно. При этом пучок коллективизировавшихся молекул снова излучит ровно столько же, сколько он уже излучил в первом резонаторе, то есть вторую половину первоначально запасенной в нем энергии.

После этих работ стало ясно, что двухрезонаторный молекулярный генератор обладает преимуществом перед обычным молекулярным генератором.

Ведь несмотря на то, что свойства самих молекул чрезвычайно неизменны, частота колебаний молекулярного генератора была далеко не так стабильна, как этого ожидали его создатели. Оказалось, что она определяется не только свойствами молекул, но и настройкой резонатора. А настройка резонатора, к сожалению, не остается постоянной.

Если зимой в лаборатории открывают окна, одним из первых замечает это резонатор и расстраивается. Конечно, его можно держать в теплице, как огуречную рассаду зимой. Для этого существуют термостаты. Но это уже лишние заботы. Можно поступить и иначе. Соорудить резонатор из особого материала, инвара, который слабо реагирует на изменение температуры. Так конструкторы и поступают. И все же полностью изолировать резонатор от внешнего мира нельзя. Ведь молекулярный генератор и создан для того, чтобы транслировать свою «радиопередачу» во внешний мир. И хочешь не хочешь, а через тот же волновод, по которому энергия молекулярного генератора передается потребителю, внешний мир влияет на него, на настройку его резонатора, генерируемую частоту.

Инженеры, естественно, стараются уменьшить этот вредный эффект, ставят специальные развязки, через которые электромагнитная волна способна проходить только в одну сторону и не может пройти в обратную. Однако такие развязки не идеальны. Они уменьшают влияние внешнего мира на резонатор молекулярного генератора, но не изолируют его полностью.

Конечно, читателю уже давно стало ясно, как двухрезонаторный молекулярный генератор помогает справляться с этой трудностью. Ведь в таком генераторе частота зависит только от первого резонатора, а сигнал берется от второго, никак не влияющего на частоту. При этом к первому резонатору не присоединяется никакой волновод. Он в электрическом отношении совершенно изолирован от внешнего мира. Это особенно важно для генераторов, подверженных тряске, вызывающей неизбежные деформации волноводов. Исследования двухрезонаторного молекулярного генератора, проведенные в Физическом институте АН СССР, были вскоре подтверждены работой английских физиков. Но это было лишь одно из направлений развития новой области науки. Впрочем, было бы удивительно, если бы все ограничились одним направлением!

Вскоре после работ Басова и Прохорова молекулярные генераторы заработали в Харьковском институте мер и измерительных приборов, где их применили для периодической проверки кварцевых часов, в Горьковском университете и в других местах Советского Союза.

В СТРАНЕ СЫРА И ЧАСОВ

Молекулярные генераторы и за рубежом переходили из лаборатории в лабораторию. И ученые продолжали находить новые особенности и новые неожиданности, которые в результате упорного труда превращались в новые победы. Один из учеников Таунса, своеобразный и талантливый, К. Шимода, ставший профессором Токийского университета и продолжающий свои исследования в Токио, еще работая с Таунсом, сделал одно тонкое наблюдение. Шимода заметил, что пучок молекул, пролетая сквозь резонатор, излучает энергию не равномерно. Излучение может быть более сильным вначале или же в конце полета и меняться в зависимости от интенсивности пучка и от других причин. Это вызывает сильный неконтролируемый уход частоты. В статье, написанной Шимодой и Таунсом вместе с Вангом, содержалось не только описание неприятного открытия, но и рецепт борьбы с его действием. Они предложили пускать в резонатор одновременно два одинаковых встречных пучка молекул. Конечно, для этого надо было иметь два одинаковых источника и две сортирующие системы, отбирающие из этих пучков активные молекулы. Если все наладить достаточно хорошо, стабильность генератора увеличилась бы в 10–15 раз!



Это было так заманчиво, что в исследования включились ученые из других стран: Швейцарии, Франции, Англии, Канады, Австралии, Чехословакии, ФРГ. Особенно плодотворны они были в Швейцарии.

Швейцария не только страна гор и сыра, но и страна часовщиков. Города и деревни Швейцарии ютятся в горных долинах, зажатых между скалистыми хребтами и снежными вершинами. Поэтому в Швейцарии нет ни очень крупных городов, ни больших заводов. Заводы и заводики, расположенные в мелких городах и в сельской местности, разбросаны по всей стране.

Исторически сложилось так, что часовым ремеслом занялись преимущественно мастера, живущие вокруг Невшательского озера. В этих же краях постепенно возникла и часовая промышленность. Со временем Невшатель стал столицей швейцарских часовщиков.

В предгорьях над городом располагается Невшательская обсерватория, одной из задач которой издавна стало определение точного времени по наблюдениям небесных светил. Эта столь важная для часовой промышленности работа была одной из обязанностей молодого астронома доктора Бонаноми. Бонаноми одним из первых понял значение молекулярного генератора для тех, кто занимается определением точного времени. Он увлекся этой идеей. Но астрономическая обсерватория неподходящее место для работ, связанных с созданием новых сложных приборов. Для этого нужны сотрудники, станки, деньги.

Горы амфитеатром спускаются к Невшательскому озеру. Внизу, недалеко от берега, расположен Невшательский университет. Казалось, что для новой сложной работы доктор Бонаноми изберет университет. Но университет университету рознь, а Невшательский университет уделял очень мало внимания физике. Не больше, чем это требовалось для общего образования филологов, медиков и богословов.

К счастью, вблизи от университета швейцарские часовые фирмы создали на коллективных началах (редчайший в капиталистическом мире случай) исследовательский институт. Институт изучал все, что относится к теории, конструкции и технологии часового производства. Здесь интересовались всем, что относится к измерению времени.

Естественно, что доктор Бонаноми, спустившись с астрономических высот, предпочел полуподвальные помещения в правом крыле часового института. Правда, в этом институте и директор и другие сотрудники почитали механику, кинематику механизмов и технологию металлов. Но они понимали, что в давно устоявшуюся страну часовщиков непреодолимо вторгаются кванты.

Вскоре к Бонаноми присоединились И. де Принс и П. Карташоф, отец которого давно переселился в Швейцарию из царской России. Эта группа наглядно доказала, что знаменитое суворовское «не числом, а умением» относится и к области науки. Здесь проводили тонкие исследования спектра молекул аммиака и изучали стабильность частоты молекулярного генератора, предлагали и проверяли различные способы увеличения его точности.

Радиоинженеры давно знали, что для неискаженного приема сложных телевизионных или радиолокационных сигналов полезно заменять обычные резонансные контуры системой двух или даже трех связанных контуров. Бонаноми и его сотрудники решили применить этот опыт в молекулярном генераторе. Они присоединили к резонатору молекулярного генератора второй такой же резонатор. Он располагался рядом с первым, но пучок молекул в него не попадал. И тем не менее он не был лишним. Задачей второго резонатора было пассивное воздействие на первый с тем, чтобы, как говорят ученые, их общая резонансная характеристика стала более пологой и меньше влияла на частоту генератора. Несмотря на простоту, это небольшое усовершенствование дало заметный эффект.