Добавить в цитаты Настройки чтения

Страница 69 из 83

2713Al + 42He → 3015P + 10n,

а искусственный изотоп фосфора с массой 30 является неустойчивым и распадается с испусканием позитронов:

3015P → 3014Si + βt.

Вскоре Жолио и Ирен Кюри подтвердили свою догадку. С помощью химических операций они доказали, что в результате бомбардировки алюминия альфа-частицами действительно образуется радиоактивный изотоп фосфора.

Взаимодействия альфа-частиц с ядрами различных элементов были первыми ядерными реакциями, которые удалось осуществить человеку. Затем арсенал ядерной физики пополнился другими «снарядами»: оказалось, что нейтрон, протон, дейтрон, электрон и даже фотон способны «реагировать» с ядрами.

Так начала развиваться ядерная химия — наука о превращении атомных ядер.

Хотя учеными созданы электронные микроскопы, позволяющие «разглядеть» некоторые крупные молекулы (например, белка), нам, по-видимому, никогда не удастся увидеть атом. Ведь размер атома около 0,00 000 001 (10–8) сантиметра. Однако, хотя мы не видим и еще меньшие частицы материи, например протоны, нейтроны, электроны, мы имеем о них довольно полное представление. Как же нам это удается?

Радиоактивные изотопы химических элементов обладают свойством излучать различные частицы. Регистрация этого излучения и дает возможность «видеть» невидимое — отдельные атомы.

Под действием потока альфа- или бета-частиц некоторые вещества, например сернистый цинк, начинают светиться, — это знали еще на заре изучения радиоактивности. Как только поток частиц прекращается, перестает светиться сернистый цинк. Таков принцип действия одного из первых приборов для регистрации радиоактивных веществ. Его назвали спинтарископом, что в переводе означает «наблюдать вспышки». Конструкция его очень проста. На иглу наносится какое-либо радиоактивное вещество, способное испускать частицы. Поток этих частиц, достигая экрана, вызывает его свечение. Если вещества на игле очень мало, можно наблюдать отдельные вспышки — «следы» долетающих до экрана частиц — и непосредственно подсчитывать число распавшихся атомов.

Пожалуй, самым «старым» методом является «метод авторегистрации» излучения. Ведь еще Беккерель обнаружил, что радиоактивные вещества действуют на фотопластинки, засвечивая их. Однако лишь в тридцатых годах советские ученые Л. В. Мысовский и Л. П. Жданов предложили использовать фотопластинки для регистрации отдельных частиц. Проходя сквозь светочувствительные эмульсии, альфа- или бета-частицы действуют на молекулы бромистого серебра. После проявления и фиксирования на такой пластинке остается след частицы, прошедшей сквозь эмульсию.

Наиболее распространенные методы регистрации радиоактивного излучения основаны на его ионизирующей способности. Если около заряженного электроскопа поместить радиоактивное вещество, то он разряжается. Под действием излучения воздух, который является довольно хорошим изолятором, становится проводником электрического тока.





На этом принципе Марией и Пьером Кюри был построен прибор для количественной оценки как интенсивности излучения, так и радиоактивного вещества. Схема его очень проста. К нижней из двух металлических пластин, отделенных друг от друга слоем воздуха, подключается положительный полюс батареи, а верхняя соединяется через электрометр с землей. Если между пластинами поместить какое-либо радиоактивное вещество, то стрелка электрометра отклонится от нуля и покажет, что между пластинами идет ток. Чем больше радиоактивного вещества будет между пластинами, тем больше отклонится стрелка электрометра.

Примерно на таком же принципе построен и наиболее распространенный в настоящее время для обнаружения и регистрации радиоактивности прибор, называемый счетчиком Гейгера — Мюллера. Он представляет собой полую металлическую трубку, по оси которой натянута металлическая нить. На трубку подается отрицательное напряжение, а на нить — положительное. Внутреннее пространство счетчика заполнено смесью газов. Когда внутрь счетчика попадает бета-частица, она производит ионизацию газа, и образовавшиеся ионы двигаются в соответствии со знаком своего заряда к аноду или катоду. Между электродами счетчика течет ток, который регистрируется счетным устройством. Время срабатывания счетчика очень мало, и поэтому при его помощи можно «сосчитывать» до миллиона частиц в секунду.

Однако с помощью описанных приборов можно «увидеть» лишь радиоактивные атомы. А как же быть, если нужно различить отдельные радиоактивные изотопы в смеси? Например, уран и радий — оба альфа-излучатели, и спинтарископ не покажет нам отличия альфа-частиц урана от альфа-частиц радия. Так же вместе будут регистрироваться и бета-частицы, если у нас, скажем, исследуется смесь радиоактивных изотопов фосфора и йода.

Оказывается, решить такую задачу, вообще говоря, можно, лишь определив основные характеристики присутствующих радиоактивных элементов или изотопов, их периоды полураспада. А для этого в большинстве случаев необходимо отделить их друг от друга.

Помните, как в известной детской сказке Золушке пришлось выбирать чечевицу из мешка золы? Братья Гримм великолепно рассказали о трогательной судьбе сироты. Но вряд ли они представляли, сколь трудна была работа Золушки.

Давайте немного посчитаем. Пусть каждая пылинка золы в тысячу раз меньше зерна чечевицы. Тогда, если равномерно перемешать мешок золы и мешок чечевицы, на каждую тысячу пылинок золы приходится лишь одно зернышко чечевицы. Трудная, конечно, задача — разобрать такую смесь.

Но представьте себе, что в современных условиях, при работе ядерного реактора на 1 грамм урана получается 10–6 грамма какого-нибудь радиоактивного изотопа. Ведь это соответствует тому, как если бы злая мачеха один мешок чечевицы смешала с тысячью мешков золы!

Золушке помогли волшебные голуби. У современных радиохимиков таковых нет. И, кроме всего прочего, выделение радиоактивных изотопов при таких соотношениях усложняется тем, что в растворах они присутствуют в исключительно малых концентрациях, порядка 10–10–10–16 грамма в литре. В этих условиях элементы теряют многие специфические свойства (обычно полезные) и приобретают новые, далеко не способствующие их выделению. Такие количества нельзя, например, выделить в виде осадка обычными химическими методами. Необходимо еще добавить, что в результате реакций деления образуется не один радиоактивный изотоп, а более трех десятков, принадлежащих различным элементам периодической системы (от цинка до гадолиния). Это уже во много раз хуже тысячи мешков золы. Однако современные «Золушки» нашли выход из положения.

В начале нашего столетия немецкий химик Отто Ган попытался отделить радиоактивный свинец от нерадиоактивного. Два года продолжалась напряженная работа, и, наконец, Ган отступил. Никакими химическими опытами нельзя было отделить их друг от друга.

Как раз это обстоятельство часто используют сейчас для выделения радиоактивных изотопов. Чтобы получить радиоактивный изотоп, присутствующий в смеси в крайне малых количествах, к нему добавляют стабильный изотоп этого же элемента, а затем уже используют химические реакции, характерные только для него.

Допустим, у нас в смеси радиоактивные изотопы цезия, бария и серебра. В таком случае в раствор добавляют их стабильные изотопы, а затем последовательно выделяют из него серебро, прибавляя какой-либо растворимый хлорид, в виде хлористого серебра и барий, добавляя карбонат; в растворе остается лишь цезий. Метод такого выделения получил название осаждения с носителями. Кстати, не всегда обязательно добавляют в раствор, содержащий радиоактивный элемент, стабильный изотоп именно этого элемента. Можно заменить его элементом, который лишь частично по свойствам похож на него. Так, для отделения плутония от урана первоначально использовалась способность четырехвалентного плутония соосаждаться с фторидом лантана. Таким образом, выделение изотопов в радиохимически чистом виде (то есть свободных от примеси других радиоактивных изотопов) оказалось не слишком тяжелой задачей для радиохимиков.