Добавить в цитаты Настройки чтения

Страница 68 из 83

Здесь N0 — количество атомов радиоактивного элемента, имевшееся в начальный момент времени; N1 — количество атомов, которое осталось по прошествии времени t.

Как же применить наше уравнение для практических целей? Давайте попробуем провести несложный расчет. Только для этого нам необходимо знать, что, как нашли ученые, K — радиоактивная постоянная, характерная для каждого вида радиоактивных атомов, связана с периодом полураспада следующим отношением:

λ = 0,693/T½

Таким образом, зная период полураспада, мы легко можем определить радиоактивную постоянную.

А теперь давайте подсчитаем, сколько радиоактивного изотопа тория 23290Th распалось за все время существования нашей планеты. Примем, что возраст Земли равен 5 миллиардам лет, а период полураспада тория-232, как было установлено, равен 1,39·1010 лет. Для начала находим радиоактивную постоянную:

λ = 0,693/1,39·1010 = 0,5·10–10

Тогда произведение λt равно:

0,5·10–10·5·109 = 0,25,

и, следовательно:

N1 = N0(1 – 0,25) = 0,75N0.

Это значит, что к настоящему времени осталось 75 процентов тория, а 25 процентов распалось за время жизни Земли.

Еще в самом начале изучения явлений радиоактивного распада ученые обнаружили интересное явление: радиоактивные элементы в природе обычно встречаются группами. Так, в минералах урана всегда есть радий, а радиоактивный газ радон всегда сопутствует радию. Это навело ученых на мысль, что радиоактивные элементы генетически связаны между собой.

Например, уран, выбрасывая альфа-частицу, превращается в другое радиоактивное вещество, которое ученые назвали уран-икс-1 (UX1). Отделив его от «материнского» элемента урана и тщательно исследовав химические свойства, ученые обнаружили, что уран-икс-1 очень похож на известный элемент торий. Позднее выяснилось, что уран-икс-1 является одним из изотопов тория. Отличие тория и урана-икс-1 заключалось лишь в их разных радиоактивных свойствах. Если период полураспада тория составляет около 1010 лет, то период полураспада урана-икс-1 равен всего 24 дням. Кроме того, торий при радиоактивном превращении выбрасывает из ядра альфа-частицу, а уран-икс-1 — бета-частицу. При этом он переходит в элемент протактиний, точнее — в его изотоп, названный ураном-икс-2 (UX2), период полураспада которого равен всего одной минуте. Уран-икс-2, выбрасывая из ядра последовательно одну бета-частицу и две альфа-частицы, превращается в радий. Тот, в свою очередь, испуская альфа-частицу, переходит в радон и т. д. Цепь последовательных превращений урана оказалась довольно длинной и в конечном итоге заканчивалась стабильным изотопом свинца с массовым числом[6] 206. Таким образом, уран — родоначальник целой серии радиоактивных элементов, которые входят в семейство урана.

Учеными было найдено, что «родоначальниками» аналогичных семейств являются и еще два элемента, существующих в природе. Это торий (Th) с массовым числом 232 и изотоп урана с массовым числом 235, называемый иногда актиноураном (AcU).

Если сравнить существующие в природе радиоактивные семейства друг с другом, обнаруживается любопытная деталь. Оказывается, массовые числа всех изотопов, входящих в семейство тория, без остатка делятся на 4. Следовательно, атомный вес их можно выразить очень простой формулой 4n, где n — целое число. Если же делить на 4 массовые числа изотопов, входящих в состав семейства урана, то во всех случаях в остатке остается число 2, значит массовые числа представителей уранового семейства можно описать формулой 4n + 2. Для семейства актиноурана получаем формулу 4n + 3. Иногда эти семейства так и называют. Например, вместо того чтобы сказать «семейство тория», говорят «семейство 4n», а вместо «семейство урана» говорят «семейство 4n + 2».

Ученым удалось искусственно «создать» в 1940 году семейство 4n + 1, когда был получен элемент нептуний (Np) с зарядом 93 и массовым числом 237. Он и оказался родоначальником семейства 4n + 1.





В 1919 году знаменитый английский ученый Эрнест Резерфорд поставил замечательный опыт. Он обстрелял ядра азота альфа-частицами. Когда он попытался разобраться в результатах эксперимента, то обнаружилась удивительная картина. Оказалось, что, поглощая альфа-частицу, ядро азота, имеющее заряд 7 и массу 14, превращается на какое-то мгновение в ядро с массой 18 и зарядом 9. Но это ядро неустойчиво, оно тут же испускает протон и превращается в ядро с массой 17 и зарядом 8. Согласно же периодической системе заряд ядра, равный 8, имеют лишь атомы кислорода. Следовательно, в результате взаимодействия ядер азота с альфа-частицами получался изотоп кислорода:

147N + 42He → 178O + 11H.

Эту ядерную реакцию можно записать и короче: 147N(αp)178O.

В такой «транскрипции» первым пишется ядро, которое подвергается превращению, затем в скобке — частица, которая его вызывает, после нее записывается вылетающая частица и уже после скобки — новое, образующееся ядро.

Затем Резерфорд выяснил, что с альфа-частицами взаимодействуют также ядра бора, фтора, натрия и некоторых других элементов. Так мечта человека о превращении одних элементов в другие стала реальностью.

В начале тридцатых годов был отмечен интересный факт. Если «обстреливать» альфа-частицами бериллий, то появляется какое-то новое излучение, обладающее необыкновенными свойствами. «Бериллиевые лучи» не отклонялись в электрическом поле и могли проходить сквозь такой слой свинца, через который не могли пройти даже гамма-лучи. В течение долгого времени не могли объяснить ученые их природу. Наконец ученик Резерфорда Чэдвик доказал: «бериллиевые лучи» представляют собой поток нейтральных частиц, по массе равных ядрам атома водорода, протонам. Он назвал их нейтронами, подчеркнув этим их электронейтральность. Оказалось, что взаимодействие альфа-частиц с бериллием происходит по реакции:

94Be + 42He → 126C + 10n,

то есть при этом образуется изотоп углерода и выделяется один нейтрон. Нейтронам суждено было сыграть выдающуюся роль в ядерной физике.

Через пятнадцать лет после эксперимента Резерфорда мир был потрясен новой сенсацией.

В 1934 году французские исследователи Фредерик Жолио и Ирен Кюри доказали всему миру, что настало время, когда человек может искусственно получать радиоактивные изотопы.

Облучая альфа-частицами алюминиевую пластинку, они обнаружили, что она сохраняет радиоактивность, даже когда источник «снарядов» убирали. Облученная пластинка испускала позитроны, и этот процесс подчинялся закону радиоактивного распада, причем активность уменьшалась вдвое примерно за 3 минуты. Известные природные радиоактивные изотопы не обладали таким периодом полураспада. Вывод мог быть один: позитрон испускается искусственным радиоактивным изотопом, возникшим при облучении алюминия альфа-частицами. Ученые предположили, что алюминий при облучении альфа-частицами превращается в фосфор:

6

Массовое число — целое число, наиболее близкое к атомному весу данного изотопа.