Добавить в цитаты Настройки чтения

Страница 33 из 52

Для многоатомных коллективов — кристаллов и молекул — принцип Паули также сохраняет силу.

Понятно теперь, почему у полупроводников количество электронов в зоне проводимости намного меньше, чем у проводников. Но этот «недостаток» оборачивается стократным преимуществом. В проводнике почти все электроны свободны. Их очень много. Поэтому внешнее воздействие мало сказывается на электронном состоянии того же железа. Между тем полупроводники болезненно чувствительны к свету и теплу. Вышло солнце из-за облаков, поднялся столбик ртути в термометре — малейшее усиление квантовой бомбардировки резко увеличивает число прыгунов через «запретную зону». Конечно, и проводники не безразличны к изменениям в окружающей среде. Известно, что сопротивление металлов зависит от температуры. Однако с ее повышением металл проводит ток все хуже и хуже. Электронам-конькобежцам все больше мешают тепловые колебания атомов в узлах кристаллической решетки. Они превращают скольжение между узлами решетки в бег с препятствиями. Правда, нагревание полупроводника тоже увеличивает противодействие току. И все же куда быстрее растет число «конькобежцев». В результате электропроводность возрастает. Нередко в тысячи и даже миллионы раз. А сопротивление при нагревании на один градус увеличивается лишь на доли процента.

Итак, у любых кристаллических материалов электропроводность зависит от высоты «запретной зоны». А у длинных и гибких полимерных нитей?

Молекула полимера с сопряженными связями напоминает ряд атомов в кристалле. Роль узлов кристаллической решетки выполняют атомы углерода. И так же, как в кристалле, здесь соблюдается принцип Паули — несовместимость одинаковых квантовых состояний у электронов соседних связей. Тут-то и начинается различие в проводимости.

Пусть в молекуле n сопряженных связей. Тогда, очевидно, у нее будет 2n пи-электронов. Сигма-электроны не в счет: они не влияют на электропроводность полимера. Если длины ординарной и двойной связей одинаковы, то пи-электрон любого атома C пользуется неограниченными правами вольноотпущенника. С равной вероятностью он может пребывать справа и слева от своего «хозяина». Стало быть, мы можем разбить мысленно молекулярную цепочку на такие звенья:

Если ординарные и двойные связи неравноценны, пи-электроны менее свободны. Они стараются держаться друг возле друга, парами. И местонахождение обоих спаренных пи-электронов наиболее вероятно в районе, который мы отмечаем двумя штрихами. Здесь уже нам придется выделить иное звено цепочки: —С = С—.

Количество звеньев первого рода 2n, второго — n. В каждом звене квантовые состояния должны отличаться от соседних. Но расщепление уровней происходит неодинаково. В молекуле с равноценными сопряженными связями электронам отводится 2n ступенек, с неодинаковыми — n. Электронов же в обоих случаях поровну — 2n, то есть n пар. Каждой паре — по ступеньке. Значит, в молекулах обоих типов электроны могут запросто уместиться на п ступеньках.

Однако в молекуле типа

у них в запасе еще п «вакантных» ступенек! Вспрыгивая на них, электроны придают молекуле свойства проводника. А в молекуле типа —С = С—С = С— все «разрешенные» ступеньки заполнены до отказа. Выше — «запретная зона». Чтобы подсобить электронам ее преодолеть, попасть в зону проводимости, требуется обстрелять молекулу квантами энергии. Перед нами — явный полупроводник.

Разумеется, вовсе не обязательно, чтобы молекула была линейной. Еще в начале столетия обнаружилось, что у молекул антрацена под действием света увеличивается проводимость. Открытию не придали особого значения. И лишь в течение последних десяти — пятнадцати лет развернулись систематические исследования циклических углеводородов с сопряженными связями. Причем самых различных. И не только таких, у которых скелеты составлены из одних углеродных атомов, как, например, у коронена. Его название созвучно со словом «корона». Действительно, структура его своей угловатой симметрией напоминает царский венец. Или кусочек паркета, составленный из семи шестиугольных плиток.

В 1959–1960 годах ряд виртуозно проведенных синтезов дал в руки охотников за полупроводниками еще более необычные молекулы: C18H18, C24H24, C30H30. Они напоминают корону, разве что без внутреннего обода. Это как бы свернутая в кольцо полимерная цепочка с сопряженными связями. Причем остовы этих удивительных конструкций смонтированы сплошь из углеродных атомов.





А вот фталоцианин содержит наряду с углеродными также и атомы азота. Да еще не в шестичленных, а в пятичленных циклах. Атомы азота не просто занимают место в каркасе этих архитектурных сооружений микромира. Их присутствие благоприятно сказывается на проводимости. Доноры, готовые пожертвовать своей неподеленной парой электронов, они вносят дополнительный вклад в электропроводность молекулы.

Немало интересных результатов при изучении фталоцианина получено недавно советским ученым Вартаняном. Выявление особенностей, присущих молекулярным постройкам с сопряженными связями, дает возможность предвидеть, даже заранее программировать, свойства соединений, которые рождаются в лабораторных колбах.

И архитекторы микромира неутомимы. Они возводят все новые и новые полимерные сооружения по чертежам квантовой химии.

В последние годы академики Александр Васильевич Топчиев и Валентин Алексеевич Каргин с сотрудниками разработали метод получения еще одной диковинки микромира. Представьте себе длинную полимерную цепочку, «склеенную» из шестиугольных плиток. Только на верхние зубцы такого молекулярного «забора» вместо атомов углерода насажены атомы азота. Изучение необычного полимера показало, что он обладает неслыханными до сих пор значениями проводимости. Причем нижний предел его электропроводности отличается от верхнего при комнатных температурах в 10 миллионов раз!

Летом 1960 года в Москве состоялся Международный симпозиум по макромолекулярной химии. После его окончания известный французский химик профессор Сорбоннского университета Мишель Мага заявил: «Одним из наиболее выдающихся исследований последнего времени явилась работа академиков А. В. Топчиева, В. А. Каргина и их сотрудников по приданию полимерам полупроводниковых свойств!»

Работы советских ученых ознаменовали собой новый этап в истории органических полупроводников. Этап, когда начался переход от наблюдения электронных архитектур к активному синтезу полупроводниковых молекул с заранее заданными свойствами.

Как вы считаете: были бы достигнуты все эти успехи без содействия квантовой механики? Думается, нет.

Одно из самых желанных свойств, которые химики стремятся придать полимерам-полупроводникам, — термостойкость. Что толку, если пленочные электростанции окажутся неженками! Ведь им придется раскинуть свои легкие покрывала не где-нибудь, а в первую очередь над знойными просторами Казахстана, Средней Азии, над раскаленными песками Сахары. А установленные на ракетах и реактивных самолетах, они должны безбоязненно выдерживать нагревание от трения о воздух.

Что ж, и этих достоинств не занимать органическим полупроводникам. Квантовая химия подсказывает, а опыт подтверждает, что свобода, предоставленная пи-электронам в системах с сопряжением, приводит к уменьшению внутренней энергии связей. А это предопределяет повышенную термостойкость таких систем.

Не так давно разработан способ синтеза полифенилена. Молекула продукта представляет собой длинную цепочку из бензольных колец. Правда, они сцеплены не так, как шестиугольники в соединении, полученном Топчиевым и Каргиным. Не так тесно, не бок о бок: каждый цикл связан с другим валентной ниточкой. Вещество труднорастворимо и неплавко. А главное, выдерживает нагревание до 400–700 градусов! И это не предел термостойкости у органических полупроводников.