Добавить в цитаты Настройки чтения

Страница 6 из 15

В 2019 году международная команда ученых из Китая, США и Испании во главе с испанским биологом Хуаном Карлосом Изписуа создала первый в мире эмбрион-химеру обезьяны с человеческими клетками. Эксперимент был проведен в Китае, где опыты с модификацией генов разрешены, однако из-за этических барьеров эмбриону разрешили прожить только 14 дней.

Химеры – животные или растения, клетки которых содержат генетически разнородный материал. Создание подобных организмов, по мнению ученых, поможет решить проблему трансплантации, так как в них можно будет выращивать человеческие органы.

Помимо трансплантации, создание химер позволяет изучить многие молекулярные механизмы, например то, как развиваются многие заболевания, и в том числе происходит процесс старения. Их понимание может дать возможность создать нужное лекарство.

В 2014 году в Массачусетском технологическом институте открыли один из механизмов редактирования генома – CRISPR/Cas9. Эта технология позволяет разрезать двуцепочечную ДНК в любом месте, в то время как другие способы имеют свои ограничения и являются более сложными для исполнения. С помощью этого метода стало возможным осуществлять более быструю и точную модификацию ДНК в геноме, а также вводить более одного гена в модифицируемый организм в моменте. Данный способ является более дешевым и простым по сравнению с предыдущими разработками. Неудивительно, что CRISPR/Cas9 в последние годы используется все чаще и находит все новые сферы применения.

Специалисты разрабатывают индивидуальные программы по значительному улучшению общего состояния здоровья: такие методики, как геномный анализ, генная терапия и молекулярная диагностика с использованием биомаркеров, уже приносят положительные результаты в экспериментах с животными. А в 2021 году было запущено первое испытание генной терапии болезни Альцгеймера с участием людей: исследователи из Калифорнийского университета в Сан-Диего будут вводить пациентам безвредный вирус, который сможет активировать ген, ассоциированный с замедлением и предотвращением процесса нейродегенерации.

Вопрос о том, какие биологические механизмы лежат в основе вечной молодости, тревожит ученых уже не один десяток лет. Ответ, как считают специалисты, может скрываться в ДНК насекомых-долгожителей – термитов.

В среднем термиты живут от двух месяцев до двух лет, если речь идет о рабочих особях и «воинах», однако их королевы живут в десятки раз дольше (от 25 до 50 лет). Если бы термиты жили столько, сколько люди, то монархи достигали бы возраста в 1000 лет.

Команда ученых под руководством профессора Фрайбургского университета Джудит Корб установила, что старение организма у термитов вида Macrotermes bellicosus связано с активностью мобильных генетических элементов, или «прыгающих генов», – самокопирующихся элементов ДНК, способных самостоятельно перемещаться и тем самым нарушать нормальное функционирование других генов, находящихся рядом, что приводит в конечном счете к старению и смерти. У монархов прыгающие гены неактивны, поэтому эти насекомые надежно защищены от процесса старения. Однако то, каким образом им удалось подавить этот механизм, ученым еще только предстоит выяснить.

В основе многих болезней лежат генетические нарушения или наследственная предрасположенность. Выявив гены, вызывающие то или иное заболевание, можно вовремя начать лечение или профилактику. В последнее время широко применяется метод полимеразной цепной реакции (ПЦР), который позволяет за несколько часов размножить в пробирке участок ДНК в миллиардах копий. Для ПЦР-тестов можно брать всего одну клетку или небольшую пробу ткани. Это очень важно, например, для ранней диагностики болезней: можно взять одну из клеток эмбриона, полученного при оплодотворении в пробирке, выполнить генетический скрининг плода и при необходимости провести лечение неродившегося ребенка. Со временем это может положительно повлиять на здоровье будущих поколений, снизив распространение болезней.

Ученые активно изучают методы борьбы со старением и выявляют гены, которые управляют этим процессом. К примеру, они сравнивают геном старых и молодых людей и при помощи компьютера выделяют места, где наблюдается наибольшее количество генетических повреждений.

Кроме того, известно, что старение вызывается укорочением теломер в процессе деления клеток. Теломеры располагаются на концах хромосом и осуществляют функцию защиты ДНК. В конце XX столетия удалось выяснить, что активация теломеразы, отвечающей за удлинение теломер, делает отдельную клетку бессмертной. Об омолаживающем потенциале теломеразы говорят в течение уже многих лет.





Учеными были разработаны специальные инъекции гена теломеразы – TERT. Конкретный подход применения TERT-терапии был подтвержден молекулярным биологом Марией Бласко на мышах, где она продлила как среднее выживание, так и максимальный возраст животных [1]. В одной группе мыши получили инъекции TERT в возрасте 420 дней, что способствовало увеличению медианной выживаемости на 24 % и максимальной продолжительности жизни на 13 %. В другой группе грызуны получили инъекции в возрасте 720 дней, что помогло увеличить медианную выживаемость на 20 % и максимальную продолжительность жизни на 13 %.

Полученные результаты позволяют предположить, что генная терапия в перспективе сможет не только побороть все наследственные заболевания, но и помочь человечеству победить старение и смерть.

Несколько слов о секвенировании

Открытие ДНК и РНК дало науке мощный толчок для того, чтобы найти надежные способы определения последовательности нуклеотидов. Все они объединены общим термином – «секвенирование».

Технологии секвенирования приближают нас к будущему геномной медицины. Расшифровка генетического кода открыла перед учеными и медиками невиданные перспективы и позволила решить целый ряд прикладных и фундаментальных задач: создание новых лекарств, вакцин и иных продуктов. Технологии секвенирования не только помогают выявить скрытые болезни, но и дают возможность проникнуть в эволюционную историю человека, животных и растений, а также понять причины массовых вымираний, происходивших на Земле. Секвенируя геномы останков, ученые узнают о происхождении видов, возрасте организма и о том, какие были условия среды в месте обитания. Именно с помощью изучения фрагментов ДНК был выделен новый вид древних людей – денисовцев [2].

Изначально секвенирование было очень дорогостоящим методом и позволить себе его могли только очень богатые люди и организации. Сегодня заказать или выполнить самостоятельно эту процедуру способна почти каждая научная или медицинская лаборатория. Существует немало компаний, выполняющих генетический тест и предлагающих индивидуальные рекомендации, которые помогут улучшить здоровье и продлить жизнь. Если знать, что один из генов дефектный, можно сгладить вред от его проявления разными способами, например коррекцией образа жизни или лекарственной терапией. Такой персонализированный подход считается более совершенным по сравнению с текущим уровнем развития медицины и несомненно полезным для сферы исследований процесса старения.

Таким образом, с помощью чтения генома можно раскрыть тайны закодированного в нем долголетия и изменить жизнь человека к лучшему, активировав «гены бессмертия» и защитив их от повреждений.

Что такое метагеном?

Технология секвенирования открыла новые горизонты не только перед генетиками, но и перед микробиологами. Ранее ученые могли исследовать геном только тех микроорганизмов, которые можно было вырастить на питательных средах. Благодаря секвенированию появилась возможность получать информацию о микробах, имея в распоряжении только их ДНК, РНК или даже фрагменты генетического материала. Развитие этой технологии привело к появлению нового раздела молекулярной генетики – метагеномики. В рамках этой дисциплины эксперты изучают гены не конкретных клеток в составе организма или в микробных клетках, а метагеном – совокупность всех генов в каком-либо образце.