Страница 8 из 9
К сожалению, даже в технической литературе встречаются такие абсурдные выражения, как «электростанция вырабатывает 1000 МВт электроэнергии». Электростанция может иметь установленную мощность 1000 мегаватт – то есть вырабатывать столько электричества, – но при этом произведет 1000 мегаватт-часов или (в единицах, используемых в науке) 3,6 триллиона джоулей энергии в час (1 000 000 000 Вт × 3600 секунд). Аналогичным образом скорость основного обмена веществ взрослого мужчины (энергия, необходимая для поддержания всех функций организма в полном покое) составляет около 80 Вт, или 80 джоулей в секунду; мужчине весом 70 килограммов, неподвижно лежащему весь день, потребуется приблизительно 7 мегаджоулей (80 × 24 × 3600) пищевой энергии, или около 1650 килокалорий, чтобы поддерживать температуру тела, обеспечивать сокращение сердца, а также осуществлять мириады ферментативных реакций[35].
В последнее время непонимание сути энергии привело к тому, что сторонники нового «зеленого» мира наивно призывают к почти мгновенному переходу от мерзкого грязного ископаемого топлива, запасы которого ограниченны, к более совершенному, не загрязняющему окружающую среду и возобновляемому солнечному электричеству. Но жидкие углеводороды, извлекаемые из сырой нефти (бензин, авиационный керосин, дизельное топливо, мазут) обладают наибольшей плотностью энергии из всех доступных источников и поэтому больше всего подходят для всех видов транспорта. Вот как выглядит лестница плотности энергии (в гигаджоулях на тонну): сухое дерево – 16, битуминозный уголь (в зависимости от качества) – 24–30, керосин и дизельное топливо – около 46. В терминах объема плотность энергии (все величины в гигаджоулях на кубический метр) дерева – 1, качественного угля – 26, керосина – 38. Плотность энергии природного газа (метана) составляет всего лишь 35 МДж/м3 – менее 1/1000 плотности энергии керосина[36].
Значение плотности энергии – а также физических свойств топлива – для транспорта очевидно. Океанские лайнеры с паровыми турбинами не сжигают дерево, поскольку при прочих равных условиях дерево займет в 2,5 раза больший объем, чем качественный битуминозный уголь, необходимый для пересечения океана (и будет как минимум на 50 % тяжелее), что значительно уменьшит эффективность перевозки людей и товаров. Самолеты на природном газе нереализуемы, потому что плотность энергии у метана на три порядка меньше, чем у авиационного керосина; уголь тоже не подходит – разница в плотности энергии не столь велика, но он не потечет из расположенных в крыльях баков к двигателям.
Преимущества жидкого топлива не ограничиваются высокой плотностью энергии. В отличие от угля, сырую нефть гораздо легче добывать (нет нужды отправлять шахтеров под землю или портить ландшафт карьерами), хранить (в цистернах или под землей, поскольку из-за гораздо более высокой плотности энергии сырой нефти любое замкнутое пространство вмещает на 75 % больше энергии в виде жидкого топлива, чем в виде угля) и перемещать (танкерами или с помощью трубопроводов, самого безопасного вида транспортировки на большие расстояния), и поэтому она легко доступна там, где в ней возникает потребность[37]. Сырая нефть требует перегонки, чтобы разделить сложную смесь углеводородов на фракции (бензин является самой легкой фракцией, мазут – самой тяжелой), но этот процесс позволяет получить более ценные виды топлива для конкретных нужд, а также незаменимые побочные продукты, такие как смазочные масла.
Смазка нужна для минимизации трения во всех движущихся механизмах, от громадных турбореактивных двигателей широкофюзеляжных авиалайнеров до миниатюрных подшипников[38]. Самым крупным потребителем смазочных материалов является автомобильный сектор (в настоящее время на дорогах мира насчитывается более 1,4 миллиарда автомобилей), следующей идет промышленность (самые большие рынки – текстильная, энергетическая, химическая и пищевая), затем океанские суда. Ежегодное потребление смазочных материалов превышает 120 мегатонн (для сравнения: суммарное производство всех пищевых масел, от оливкового до соевого, составляет около 200 мегатонн в год), а поскольку доступная альтернатива – синтетическая смазка, изготовленная из более простых, но, как правило, тоже получаемых из нефти компонентов, а не непосредственно из сырой нефти, – обходится дороже, потребность в них будет расти по мере роста промышленности во всем мире.
Еще один продукт, получаемый из сырой нефти, – асфальт. В настоящее время в мире производится порядка 100 мегатонн этого черного липкого материала; 85 % используется для дорожного покрытия (горячие и теплые асфальтовые смеси), остальное для кровли[39]. Есть и другие способы использования углеводородов не в качестве топлива. Они – незаменимое сырье для самых разных процессов химического синтеза (в основном получения этана, пропана и бутана из сжиженного природного газа), при производстве синтетических волокон, смол, клеящих веществ, красок и покрытий, растворителей и пестицидов – без всего этого современный мир не может существовать[40]. Учитывая эти преимущества и полезные свойства, совершенно очевидно – и неизбежно, – что наша зависимость от сырой нефти будет расти по мере ее удешевления и возможности доставки в любую точку мира.
Переход от угля к сырой нефти растянулся на несколько поколений. Промышленная добыча сырой нефти началась в 1850-х гг. в России, Канаде и США. Скважины, которые бурили древним ударным способом, когда тяжелый буровой снаряд забивается в почву, были неглубокими, а главным продуктом примитивной перегонки нефти оставался керосин для ламп (который заменил китовую ворвань и свечи)[41]. Новые рынки для продуктов перегонки нефти появились только после широкого распространения двигателей внутреннего сгорания: сначала изобрели бензиновые двигатели (с использованием цикла Отто) для легковых автомобилей, автобусов и грузовиков, затем более эффективные двигатели конструкции Рудольфа Дизеля, топливом для которых служила более тяжелая и дешевая фракция (солярка, как вы уже догадались) и которые ставились преимущественно на суда, грузовики и тяжелое машинное оборудование (более подробно об этом см. главу 4, посвященную глобализации). Распространение этих новых первичных двигателей было медленным, и до Второй мировой войны количество владельцев личных автомобилей быстро росло только в США и Канаде.
Сырая нефть стала глобальным топливом и в конечном итоге самым главным источником первичной энергии благодаря открытию гигантских нефтяных месторождений на Ближнем Востоке и в СССР – и, разумеется, благодаря появлению больших танкеров. Некоторые крупные месторождения на Ближнем Востоке начали разрабатывать еще в 1920-х и 1930-х гг. (иранский Гечсаран и иракский Киркук в 1927 г., кувейтский Бурган – в 1937 г.), но большинство были открыты после войны, в том числе Гавар (крупнейшее в мире) в 1948 г., Сафания в 1951 г. и Манифа в 1957 г. – все в Саудовской Аравии. В Советском Союзе самые богатые нефтяные месторождения были открыты в 1948 г. (Ромашкинское в Волго-Уральской нефтегазоносной области) и в 1965 г. (Самотлорское в Западной Сибири)[42].
Рост и относительное падение спроса на сырую нефть
Массовое производство легковых автомобилей в Европе и Японии и сопутствующий перевод экономик этих стран с угля на сырую нефть, а впоследствии на природный газ началось только в 1950-х гг. – одновременно с расширением международной торговли и путешествий (в том числе на новых реактивных лайнерах), а также с использованием нефтехимического сырья для производства аммиака и пластика. В 1950-х гг. мировая добыча сырой нефти удвоилась, а в 1964 г. сырая нефть заменила уголь как главное ископаемое топливо. Добыча постоянно увеличивалась, спрос удовлетворялся, и цены падали. В фиксированных ценах (скорректированных с учетом инфляции) мировая цена на нефть в 1950 г. была ниже, чем в 1940-м, в 1960 г. – ниже, чем в 1950-м, а в 1970 г. – ниже, чем в 1960-м[43].
35
Расчет основного обмена веществ: Joint FAO/WHO/UNU Expert Consultation, Human Energy Requirements. Rome: FAO, 2001. P. 37, http://www.fao.org/3/a-y5686e.pdf
36
Engineering Toolbox. Fossil and Alternative Fuels – Energy Content (2020), https://www.engineeringtoolbox.com/fossilfuels-energy-content-d_1298.html
37
Smil V. Oil: A Begi
38
Mang T., ed. Encyclopedia of Lubricants and Lubrication. Berlin: Springer, 2014.
39
Asphalt Institute. The Asphalt Handbook. Lexington, KY: Asphalt Institute, 2007.
40
International Energy Agency. The Future of Petrochemicals. Paris: IEA, 2018.
41
Thuro C. M. V. Oil Lamps: The Kerosene Era in North America. N. Y.: Wallace-Homestead Book Company, 1983.
42
Li G. World Atlas of Oil and Gas Basins. Chichester: Wiley-Blackwell, 2011; Howard R. The Oil Hunters: Exploration and Espionage in the Middle East. L.: Hambledon Continuum, 2008.
43
Aguilera R. F. and Radetzki M. The Price of Oil. Cambridge: Cambridge University Press, 2015; Cordesman A. H. and Al-Rodhan K. R. The Global Oil Market: Risks and Uncertainties. Washington, DC: CSIS Press, 2006.