Добавить в цитаты Настройки чтения

Страница 7 из 9

Практическое понимание энергии было значительно расширено в XIX в. благодаря большому количеству экспериментов с горением, теплотой, излучением и движением[28]. В результате появилось наиболее распространенное определение энергии: «способность производить работу». Это определение правомерно только при условии, что термин «работа» обозначает не только некий вложенный труд, но и, как выразился один из ведущих физиков той эпохи, общий физический «акт изменения конфигурации системы, направленный против силы, сопротивляющейся этому изменению»[29]. Тем не менее это определение все еще очень похоже на ньютоновское и далеко от интуитивного.

Пожалуй, на вопрос «что такое энергия?» лучше всего ответил один из самых выдающихся и разносторонних физиков XX в. Ричард Фейнман, который в своих знаменитых «Лекциях по физике» со свойственной ему прямотой подчеркнул, что «энергия имеет множество разных форм и для каждой из них есть своя формула: энергия тяготения, кинетическая энергия, тепловая энергия, упругая энергия, электроэнергия, химическая энергия, энергия излучения, ядерная энергия, энергия массы».

А потом сделал обескураживающий, но очевидный вывод:

Важно понимать, что физике сегодняшнего дня неизвестно, что такое энергия. Мы не считаем, что энергия передается в виде маленьких пилюль. Ничего подобного. Просто имеются формулы для расчета определенных численных величин, сложив которые мы получаем число… всегда одно и то же число. Это нечто отвлеченное, ничего не говорящее нам ни о механизме, ни о причинах появления в формуле различных членов[30].

Так оно и есть. Мы можем использовать формулы для очень точного вычисления энергии летящей стрелы или реактивного самолета, потенциальной энергии массивного камня, готового скатиться с вершины горы, тепловой энергии, получаемой в результате химической реакции, световой (лучистой) энергии мерцающей свечи или сфокусированного лазера – но не можем свести все эти виды энергии в единое, легко определяемое понятие.

Тем не менее неуловимая природа энергии не смущала армии современных экспертов: с начала 1970-х гг., когда энергия стала темой широкого обсуждения, они с необыкновенным невежеством и вдохновением рассуждали об энергии. Энергия относится к самым трудным для понимания и неверно интерпретируемым понятиям, и плохое знание основ привело к многочисленным иллюзиям и заблуждениям. Как мы видели, энергия существует в разных видах, и, для того чтобы извлечь из нее пользу, необходимо преобразовать один ее вид в другой. Но раньше эту многогранную абстракцию рассматривали как нечто целое, словно разные виды энергии легко взаимозаменяемы.

Некоторые из этих замен на самом деле относительно просты и полезны. Польза от замены свечей (в них химическая энергия воска превращается в лучистую энергию) электрическими лампочками, для которых требуется электроэнергия, вырабатываемая паровыми турбинами (химическая энергия топлива преобразуется сначала в тепло, а затем в электрическую энергию, которая затем превращается в лучистую энергию), совершенно очевидна – безопаснее, ярче, дешевле и надежнее. Замена паровозов и тепловозов электровозами обеспечила более дешевую, чистую и быструю перевозку грузов и людей: все скоростные поезда электрические. Но многие желательные замены остаются дорогостоящими, нереализуемыми в настоящее время или невозможными в требуемых масштабах – независимо от того, как громко рекламируются их достоинства.

Самым распространенным примером из этой категории являются электромобили: в настоящее время они доступны, а лучшие модели достаточно надежны, но в 2020 г. они все еще были дороже автомобилей того же класса с двигателем внутреннего сгорания. Что касается второй категории, то в следующей главе я подробно расскажу о том, что синтез аммиака, необходимого для производства азотных удобрений, в настоящее время в значительной степени зависит от природного газа как источника водорода. Водород можно получить путем разложения (электролиза) воды, но этот способ почти в пять раз дороже, чем процесс извлечения водорода из весьма распространенного и дешевого метана, – масштабное промышленное производство водорода нам еще предстоит создать. Ярчайшим примером последней категории может служить использование самолетов на электрической тяге для дальних перелетов (эквивалент Boeing 787 с керосиновыми двигателями для путешествия из Нью-Йорка в Токио): как мы убедимся, это преобразование энергии еще долго будет оставаться нереалистичным.

Первый закон термодинамики утверждает, что при преобразовании энергии не происходит ее потерь: из химической в химическую при переваривании пищи, из химической в механическую при сокращении мышц, из химической в тепловую при сжигании природного газа, из тепловой в механическую при вращении турбины, из механической в электрическую внутри генератора или из электрической в электромагнитную в виде света, освещающего страницу этой книги. Тем не менее любое преобразование энергии приводит к рассеиванию тепла: энергия не теряется, но уменьшается ее полезность, способность совершать нужную нам работу (второй закон термодинамики)[31].

Все виды энергии можно измерять в одних и тех же единицах; в естественных науках используют джоуль, а в работах по диетологии – калорию. В следующей главе, где я подробно расскажу о масштабных энергетических субсидиях в современную пищевую промышленность, мы столкнемся с разными свойствами энергии, имеющими жизненно важное значение. Производство курятины требует энергии, во много раз превышающей ту, что содержится в пригодном для еды мясе. Мы можем подсчитать уровень субсидий в виде отношения энергий (затраченные джоули/полученные джоули), однако между затраченной энергией и результатом существует очевидная разница: мы не можем питаться соляркой или электричеством, тогда как нежирное куриное мясо представляет собой почти идеальную пищу, содержащую высококачественный белок, необходимый макроэлемент, который невозможно заменить эквивалентным количеством энергии из жиров или углеводов.

Когда речь идет о преобразовании энергии, перед нами открывается широкий выбор, причем разные способы обладают разной эффективностью. Высокая плотность химической энергии в керосине и дизельном топливе подходит для межконтинентальных перелетов или морских перевозок, но, если вы хотите, чтобы подводная лодка пересекла Тихий океан, не всплывая на поверхность, лучшим решением будет расщепление урана в маленьком реакторе для выработки электричества[32]. А на земле крупные ядерные реакторы являются наиболее надежными источниками электричества: некоторые из них вырабатывают электроэнергию 90–95 % времени, тогда как для лучших морских ветряных турбин этот показатель не превышает 45 %, а для фотоэлементов – 25 % даже в самом солнечном климате (в Германии солнечные панели вырабатывают электроэнергию только около 12 % времени)[33].

Все это элементарная физика или электротехника, но эти реалии игнорируются на удивление часто. Еще одна распространенная ошибка – путать энергию и мощность, и такое происходит еще чаще. Эта ошибка выдает незнание основ физики, и, к сожалению, ее совершают не только дилетанты. Энергия – это скаляр, и в физике характеризуется только величиной; скалярными также являются такие известные величины, как объем, масса, плотность, время. Мощность характеризует энергию в единицу времени и поэтому аналогична скорости (в физике скорость указывает на изменения, обычно в единицу времени). Установки, вырабатывающие электроэнергию, как правило, характеризуются мощностью, но мощность – это всего лишь скорость производства или потребления энергии. Мощность вычисляется делением энергии на время: единица ее измерения, используемая в науке, называется ватт = джоуль/секунда. Энергия равняется мощности, умноженной на время: джоули = ватты × секунды. Если вы зажжете маленькую свечку в католическом соборе, она может гореть 15 часов, преобразуя химическую энергию воска в тепло (тепловую энергию) и свет (электромагнитную энергию), а ее средняя мощность составит почти 40 Вт[34].

28

Smith C. The Science of Energy: A Cultural History of Energy Physics in Victorian Britain. Chicago: University of Chicago Press, 1998; Cardwell D. S. L. From Watt to Clausius: The Rise of Thermodynamics in the Early Industrial Age. L.: Heinema





29

Maxwell J. C. Theory of Heat. L.: Longmans, Green, and Company, 1872. P. 101. (Максвелл Дж. К. Теория теплоты. СПб., 1888.)

30

Feynman R. The Feynman Lectures on Physics. Redwood City, CA: Addison-Wesley, 1988. Vol. 4. P. 2. (Фейнман Р. Фейнмановские лекции по физике. Современная наука о природе / Пер. с англ. А. Ефремова, Г. Копылова, О. Хрусталева. М.: AST Publishers, 2019.)

31

Существует множество книг, знакомящих с основами термодинамики, но среди них выделяется одна: Sherwin K. Introduction to Thermodynamics. Dordrecht: Springer Netherlands, 1993.

32

Friedman N. U. S. Submarines Since 1945: An Illustrated Design History. A

33

Коэффициент использования вычисляется как отношение реального производства к максимально возможному для данного устройства. Например, большая ветряная турбина мощностью 5 МВт при непрерывной работе в течение всего дня выработает 120 МВт электроэнергии; если в реальности она выдает только 30 МВт, значит, ее коэффициент использования составляет 25 %. Средние годовые коэффициенты использования в США в 2019 г.: 21 % для солнечных панелей, 35 % для ветряных турбин, 39 % для гидроэлектростанций и 94 % для атомных станций: Table 6.07. B. Capacity Factors for Utility Scale Generators Primarily Using Non-Fossil Fuels // https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b. Низкий коэффициент использования солнечных панелей в Германии не должен вызывать удивление: и в Берлине, и в Мюнхене количество солнечных дней в году меньше, чем в Сиэтле!

34

Церковная свеча весом около 50 г, с плотностью энергии парафина 42 кДж/г содержит 2,1 МДж (50 × 42 000) химической энергии, а ее средняя мощность при 15-часовом горении составит почти 40 Вт (как у тусклой электрической лампочки). Но в обоих случаях лишь малая часть общей энергии преобразуется в свет: меньше 2 % для современной лампы накаливания и всего 0,02 % для парафиновой свечи. Вес свечи и время горения см.: https://www.candlewarehouse.ie/shopcontent.asp?type=burn-times; световая эффективность см.: https://web.archive.org/web/20120423123823/http://www.ccri.edu/physics/keefe/light.htm