Страница 12 из 14
● агрегирование;
● выполнение вычислений;
● отбор.
При этом важно еще раз отметить, что именно получатель данных определяет, является сообщение данными или информацией. Смысл данных часто определяется через ассоциации с опытом или установление связей с другими данными. Понятие смысла субъективно, и то, что один человек считает ценной информацией, другой может воспринимать как данные, не имеющие особого значения.
2. Преобразование информации в знания.
Итак, информация обычно рассматривается как данные, обработанные таким образом, чтобы быть значимыми (имеющими смысл), ценными и подходящими для конкретной цели. В то же время знания рассматриваются как информация, применимая на практике (имеющая практическое значение), или информация в сочетании с пониманием и возможностями. Но, поскольку в основе определений информации лежит смысл, а для его выявления необходимо понимание, использовать практическую применимость или понимание в качестве признаков, отличающих знания от информации, кажется затруднительным.
Кроме того, различение явного знания и информации кажется еще менее оправданным. Если знания являются достоянием людей и воплощают в себе предшествующее понимание, опыт и результаты обучения, то трудно утверждать, что явные знания, зафиксированные в документах и информационных системах, чем-то отличаются от информации.
Часто выделяют следующие процессы, преобразующие информацию в знания:
● объединение информации из многих источников в течение определенного времени;
● структурирование убеждений;
● изучение предмета и приобретение опыта;
● организация и обработка информации для передачи понимания, опыта, накопленных результатов обучения и компетенции;
● интернализация[70] с обращением к внутренним когнитивным структурам.
3. Преобразование знаний в мудрость.
Если попытаться сформулировать суммарное определение мудрости на основе приведенных выше соображений, то можно сказать, что это способность действовать наиболее подходящим образом с учетом того, что известно (знания) и что приносит наибольшую пользу (социально-этические нормы).
Мы уже говорили, что мудрость – еще более неуловимое и расплывчатое понятие, чем знания. Оно сильно связано с человеческой интуицией, пониманием, интерпретацией и действиями. Поэтому в рамках данной книги, посвященной прежде всего управлению данными, углубляться в эти связи мы не будем. Отметим только, что важность вклада знаний (а следовательно, данных и информации) в формирование мудрости сомнений не вызывает.
На основе проведенного обсуждения можно сделать следующие выводы[71].
1. Иерархия DIKW в явном виде упоминается не всегда, но она подразумевается в определениях данных, информации, знаний и мудрости в большинстве источников. Обычно информация определяется в терминах данных, знания – в терминах информации, а мудрость – в терминах знаний.
2. В описании процессов, преобразующих элементы, находящиеся ниже в иерархии, в элементы, стоящие над ними, наблюдается меньшая согласованность, и из этого вытекает недостаточная четкость определений. В частности, в отношении следующих аспектов:
– Поскольку в качестве признаков, отличающих данные от информации, выделяются структура и смысл, точки зрения на то, хранится информация в информационных системах и в умах людей, или она образуется только в умах, могут расходиться[72].
– Определения информации (как данных, обработанных для того, чтобы быть значимыми, ценными и подходящими для конкретной цели) и знаний (как информации, имеющей практическое значение) частично совпадают. В связи с этим вопрос соотношения этих понятий нуждается в дальнейшем исследовании.
– Явные знания по своей сути практически не отличаются от информации.
Можно выделить следующие основные характеристики элементов иерархии DIKW, значения которых изменяются при переходе с уровня на уровень:
● ценность;
● cмысл;
● структура;
● широта применения;
● возможность передачи;
● необходимость участия человека при вводе (возможность автоматического ввода);
● возможность программируемой обработки;
● возможность передачи.
Изменение значений характеристик отражено на рисунке 2.3.
Уровни пирамиды знаний могут быть сопоставлены с классами информационных систем, которые преимущественно используются для работы с ними (рис. 2.4).
* Rowley J. The wisdom hierarchy: representations of the DIKW hierarchy. Journal of Information Science, 2007, 33(2), 163–180. DOI: 10.1177/0165551506070706. – URL: http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Rowley06.pdf.
2.4. Разрыв между данными и информацией
Хотя пирамида знаний служит общепринятой устоявшейся моделью, с каждым годом появляются новые публикации с предложениями по ее корректировке на основе учета современных тенденций.
Можно обратить внимание, например, на статью[73]. В ней справедливо отмечается, что, хотя общее количество собираемых данных стремительно возрастает, не все из них образуют базу для информации, не говоря уже о знаниях или мудрости. Нельзя не учитывать тот факт, что данные могут быть неточными или ложными. Таким образом, постоянно растущие собрания больших массивов данных также обязательно включают в себя и постоянно растущие собрания больших массивов неточных или ложных данных. На сегодняшний день нет никаких известных исследований, показывающих, остается ли удельный вес неточных или ложных данных постоянным по мере роста общего объема собираемых данных. Возможно, его величина сохраняется прежней или уменьшается, но не исключено, что доля неточных и ложных данных увеличивается. Это может происходить, в частности, из-за стремительного роста различного рода фейковых новостей или же по причине отрицательной реакции людей на сам сбор данных и т. п.[74] Поэтому просто сбор данных не приносит особой пользы. Что действительно ценно и необходимо, так это увеличение сбора точных и достоверных данных. Приведенные соображения, естественно, предполагают, что конечная цель получения данных – обретение знаний и мудрости, и не распространяются, например, на компании, чья основная деятельность – построение и обслуживание дата-центров, собирающих и хранящих любые данные.
Исходя из этого, в статье предложена нелинейная схема, отражающая взаимоотношения элементов иерархии DIKW (рис. 2.5). На ней элементы представлены в виде перекрывающихся и соприкасающихся областей (диаграмма Венна). Данные и информация не лежат в основе знаний и мудрости, а просто частично входят в их состав. В ближайшие годы область данных, вероятно, будет расти экспоненциально, но еще неизвестно, увеличатся ли в размерах какие-либо другие области. Преимущество приведенной диаграммы в том, что она точнее отражает соотношение представленных на ней понятий, чем пирамида знаний, и, что не менее важно, ориентирует на углубление знаний и обретение мудрости, а не просто на увеличение сбора данных.
* Van Meter, Heather J. Revising the DIKW Pyramid and the Real Relationship Between Data, Information, Knowledge and Wisdom. Law Technology and Humans, 2020, Vol. 2. No. 2, 69–80. DOI: 10.5204/lthj.1470. – URL: https://lthj.qut.edu.au/article/view/1470.
70
Интернализация (от лат. interims – «внутренний») – термин применяется в социологии, психологии, педагогике и культурологии для обозначения процесса освоения индивидом или группой людей социальных ценностей, норм, установок, стереотипов, принадлежащих тем, с кем он, она или они взаимодействуют.
В результате интернализации структуры, внешние по отношению к данной личности или группе, превращаются в их внутренние регуляторы поведения. Механизмы интернализации очень сложны и пока слабо изучены.
71
Rowley J. The wisdom hierarchy: representations of the DIKW hierarchy. Journal of Information Science, 2007, 33(2), 163–180. DOI: 10.1177/0165551506070706. – URL: http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Rowley06.pdf.
72
Это замечание, в частности, показывает, что по сравнению с термином «управление информацией» схожий c ним термин «управление данными» более общий и в некоторых случаях его использование более корректно.
73
Van Meter, Heather J. Revising the DIKW Pyramid and the Real Relationship Between Data, Information, Knowledge and Wisdom. Law Technology and Humans, 2020, Vol. 2. No. 2, 69–80. DOI: 10.5204/lthj.1470. – URL: https://lthj.qut.edu.au/article/view/1470.
74
Очевидно, с этим связано появление упомянутых нами во введении публикаций о токсичности данных и о том, что данные – это «новый мусор».