Добавить в цитаты Настройки чтения

Страница 7 из 13



Устройство передвижения служит для перемещения манипулятора или ПР в целом в необходимое место рабочего пространства и состоит из ходовой части и приводных устройств.

Подобно человеческой руке манипулятор также перемещает концевой эффектор с одного места на другое. При оснащении концевого эффектора различными устройствами, у робота появляется возможность выполнять определенные технологические операции. В робототехнике концевой эффектор – устройство на конце руки робота, предназначенное для взаимодействия с окружающей средой. Одним из наиболее распространенных вариантов является подобие руки, которая позволяет роботу брать и перемещать объекты с места на место

Функциональная схема механической системы промышленного робота представлена на рис.3.4.

Рис. 3.4. Функциональная схема механической системы промышленного робота

Рассмотрев определение числа степеней подвижности, можно перейти к рассмотрению маневренности манипулятора ПР. Под маневренностью принято понимать число его степеней подвижности при неподвижном (зафиксированном в пространстве) положении его выходного звена (рабочего органа). Маневренность определяет возможность руки манипулятора выполнять сложные движения и обходить препятствия в рабочем пространстве при манипулировании с объектом или выполнении сложных операций.

Все манипуляционные устройства характеризуются маневренностью и коэффициентом сервиза (КС), под которым понимают возможность подхода РО к заданной точке с разных направлений. КС дает представление о двигательных возможностях М. Маневренность М – ϶ᴛᴏ число степеней подвижности при фиксированном положении РО, которая определяет возможность обхода манипулятором препятствий в рабочем объеме и способность к выполнению сложных операций.

Движения М подразделяются на группы. Так, к примеру, движения М, снабженного наиболее распространенным в ПР РО в виде (устройства захвата) УЗ бывают следующих видов:

–ориентирующие перемещения УЗ, соизмеримые с его размерами;

–транспортирующие перемещения, определяемые размерами звеньев руки и соизмеримые с размерами рабочего объема;

–координатные перемещения на расстояния, превышающие размеры ПР и размеры рабочего объема.

Совокупность степеней подвижности манипулятора ПР определяет возможность его рабочего органа занимать различные положения в разных областях ограниченного конкретными связями и размерами звеньев кинематической цепи рабочего пространства М.

3.1.1. Приводы промышленного робота

Привод промышленного робота предназначен для преобразования подводимой энергии в механическое движение исполнительных звеньев манипулятора в соответствии с командными сигналами, поступающими от системы управления и в общем виде содержит энергоустановку, двигатели, редукторы, преобразователи вращательного движения в поступательное и наоборот, тормоз, муфта и датчики перемещения исполнительных звеньев.

К приводам, применяемым в роботах, предъявляют весьма жесткие специфические требования:

–должны встраиваться в исполнительные системы робота – в манипуляторы и системы передвижения,



–габариты и масса приводов должны быть минимальными, так как приводы в роботах работают в основном в неустановившихся режимах и с переменной нагрузкой, то приводы в переходных процессах должны быть практически не колебательными.

Скорость поступательного движения на выходе приводов роботов должна составлять от долей до нескольких м/с при погрешности отработки перемещения, равной долям миллиметра.

Тип привода ПР определяется, с одной стороны, условиями функционирования, грузоподьемностью и требованиями к его управляемости. С другой же стороны, тип привода ПР определяется видом энергии, используемой для работы его исполнительных механизмов. Выбор типа привода зависит от функционального назначения и условий эксплуатации ПР (пожара-и взрывобезопасность, защищенность и невосприимчивость к отдельным видам помех), от требований к способу управления и регулирования, вида системы управления, грузоподьемности и требуемых динамических характеристик конструкции, способа регулирования, требований технологического процесса. Па выбор привода также может оказать влияние его компоновочная схема: расположение силовых двигателей (в едином блоке, на исполнительных звеньях, комбинированная).

В роботах нашли применение все известные типы приводов: электрические, гидравлические и пневматические; с поступательным и вращательным движением; регулируемые (по положению и скорости) и нерегулируемые; замкнутые (с обратной связью) и разомкнутые; непрерывного и дискретного действия (в том числе шаговые). По имеющимся оценкам, примерно в 50% современных промышленных роботах используется электрический привод, в 30%– гидравлический и в 20%– пневматический.

Пневмопривод одной степени подвижности образован двигателем, распределительным устройством и регулятором скорости. Двигатель может быть либо поступательного движения – пневмоцилиндр, либо поворотный. К пневмоцилиндру часто пристроен тормоз, включающийся в конце хода поршня. Через шток поршень передаст движение от двигателя. Регулятор скорости привода поддерживает заданную скорость его движения путем стабилизации расхода воздуха, подаваемого в двигатель (например, с помощью дросселя с обратным клапаном).

Пневматические двигатели работают на сжатом воздухе давлением от 0,3 до 0,6 МПа. Сжатый воздух поступает на приводы от общего блока питания, который состоит из аппаратуры подготовки воздуха и редуктора. Подготовка воздуха заключается в его очистке от влаги и механических примесей и внесении распыленного масла для смазки трущихся поверхностей в двигателе. Редуктор обеспечивает поддержание определенного давления воздуха на входе привода. Сжатый воздух па вход блока питания поступает обычно из общей пневмосети, в которую он подается от компрессора (компрессорной станции). В мобильных роботах воздух поступает от баллонов, где он находится под повышенным давлением.

При простейшем цикловом управлении начальная и конечная точки перемещений определяются передвижными регулируемыми механическими упорами, устанавливаемыми на подвижной части привода (на штоке пневмоцилиндра или выходном валу поворотного двигателя). Для обеспечения точности позиционирования и быстродействия устанавливают различные гидравлические или пружинные демпферы, обеспечивающие плавный выход в точку позиционирования. Иногда используют способ торможения противодавлением путем переключения подачи воздуха из одной полости двигателя в другую – встречно движению поршня или лопасти в зависимости от двигателя. Использование таких схем приводов обеспечивает значительно более высокую точность (по сравнению с позиционным управлением с обратной связью по положению) (погрешность менее 0,1 мм), высокое быстродействие и скорость перемещения до нескольких метров в секунду.

Применение пневматических приводов в робототехнике объясняется их дешевизной, простотой и соответственно надежностью. Пневматические приводы применяют только в роботах небольшой грузоподъемности – до 10кг, реже 20кг.

Принцип его действия очень прост. Компрессор является своеобразной «газовой пружиной». Он сжимает воздух и хранит накопленную потенциальную энергию до момента подачи его в пневматический двигатель. В качестве двигателей в пневматических приводах используются:

–силовые пневмоцилиндры с возвратно-поступательным движением штока;

–поворотные пневмомоторы;

–ротационные пневмомоторы.

Наиболее распространены пневмоцилиндры, которые могут соединяться со звеньями манипулятора без помощи передаточных механизмов, что упрощает механическую систему робота. При расширении сжатого воздуха эта потенциальная энергия перейдет в кинетическую энергию поршня со штоком, рис.3.5, который является простейшим пневмодвигателем.