Добавить в цитаты Настройки чтения

Страница 4 из 6



Анализ формул можно немного продолжить. Когда u много меньше v, усреднение надо произвести более аккуратно, разложив знаменатель дроби в ряд по малому параметру u/v. Ответ для ускорения вращения окажется вдвое меньше той оценки, которую мы привели в ходе решения. Эти два ускорения можно поделить друг на друга и получить простое выражение:

Коэффициент 1/2 имеет вполне осязаемые последствия. Он меньше единицы, и отсюда получается, что отношение u/v, пусть поначалу очень маленькое, будет увеличиваться с течением времени. А поскольку задача математически симметрична относительно замены поступательного движения на вращательное, отсюда можно заключить, что если отношение u/v очень велико, то с течением времени оно будет уменьшаться. Мы приходим к простому выводу: какими бы ни были начальные скорости u и v, в процессе движения они будут не только синхронно уменьшаться (это мы уже установили в ходе решения), но и все больше приближаться друг к другу.

Для тех, кто знаком с дифференциальными уравнениями, отметим, что нечувствительность ответа к конкретному соотношению между начальными скоростями вращения и скольжения имеет простое математическое объяснение: уравнение для отношения u/v имеет «устойчивую неподвижную точку» при u/v = 1. Это значит, что, каким бы ни было начальное значение u/v, за счет взаимного влияния вращения и скольжения система сама стремится к этому значению в ходе эволюции во времени.

Если бы мы вместо кольца взяли однородный плоский диск, то вывод о существовании устойчивой неподвижной точки остался бы в силе, но ее значение сдвинулось бы и составило примерно 1,53. А если бы вместо плоского диска мы взяли выпуклую или вогнутую форму («чашку», поставленную прямо или вверх дном), то устойчивая неподвижная точка вообще исчезла бы, и тогда вращение и скольжение прекращались бы в разные моменты времени.

Любопытно, что эта довольно простая по постановке задача была проанализирована в деталях совсем недавно. Первые подробные расчеты были опубликованы в 1985 г., причем статья так и называлась: «К вопросу о движении хоккейной шайбы»[1]. Анализ более сложных случаев был проведен уже в 2000-х гг., и тогда же были поставлены прямые эксперименты, которые подтвердили расчеты[2]. Эта система оказалась неожиданно богата на явления, как с точки зрения математических законов (взаимное влияние поступательной и вращательной степеней свободы), так и возможных прикладных аспектов.

Дополнительная информация

Популярный рассказ о современных исследованиях этой простой на вид задачи можно найти в новостной заметке автора «Физики изучают удивительные законы скольжения вращающихся тел», «Элементы», 04.01.2006: elementy.ru/link/slide.

3. Бесконечно длинный маятник

Один из самых простых школьных примеров колебаний – колебания математического маятника (см. рис. 1). Математический маятник – это просто точечная масса, подвешенная в поле тяжести на нерастяжимой нити длины L. Если его отклонить от вертикали на небольшой угол и отпустить, то он начнет колебаться туда-сюда с периодом

Как заметил еще Галилей, период колебаний не зависит от их амплитуды, по крайней мере до тех пор, пока эта амплитуда мала.

Из выписанной формулы следует, что чем длиннее маятник, тем больше период, то есть тем медленнее происходит колебание. Но может ли оно стать сколь угодно медленным?

Давайте рассмотрим совершенно гипотетическую, даже фантастическую постановку задачи: имеется математический маятник, длина его подвеса безумно велика и во много раз превышает радиус Земли. Сам точечный грузик при этом находится в лаборатории на уровне земли, но только точка подвеса унесена далеко – даже так: сколько угодно далеко – в космос! Для простоты будем считать, что Земля и точка подвеса – неподвижны. Это, конечно, слегка безумная и совершенно нереализуемая на практике ситуация, но мы имеем право рассмотреть такой мысленный эксперимент.

Рис. 1. Математический маятник в поле тяжести Земли. Пунктиром показано положение равновесия, сплошной линией – отклонение от него. Сила натяжения нити и сила тяжести mg, складываясь, порождают возвращающую силу, которая и заставляет маятник колебаться

Вычислите период малых колебаний такого математического маятника бесконечной длины. Какой еще известный вам процесс имеет тот же период? Объясните, почему эти два совершенно разных типа движения имеют одинаковый период.

Подсказка 1





Ясно, что бесконечность подставлять в формулу нельзя, поскольку при выводе этой школьной формулы не предусматривалась такая экстремальная ситуация, которую мы предложили в задаче. Значит, надо формулу вывести еще раз – но только с учетом того, что радиус Земли много меньше длины маятника, а не наоборот.

Подсказка 2

Тут есть два подхода: стандартный метод расчета и маленькая хитрость.

Стандартный метод вычисления периода колебаний таков. Рисуем положение равновесия и положение с небольшим горизонтальным отклонением x от него. Выясняем, откуда берется возвращающая сила. Убеждаемся, что возвращающая сила линейно зависит от отклонения, и возникший коэффициент пропорциональности называем жесткостью: F = − kx. Жесткость, деленная на массу грузика, дает частоту ω в квадрате. Период – это 2π/ω.

Маленькая же хитрость заключается в том, что когда вы начнете следовать этой процедуре, то догадаетесь, что задача в некотором смысле эквивалентна исходной. И тогда вы сразу сможете написать ответ без вычислений.

Так или иначе, начните с рисунка исходного положения бесконечно длинного маятника, положения при отклонении от равновесия, нарисуйте силы и найдите возвращающую силу.

На рис. 2 изображен наш бесконечно длинный маятник. Пунктирной линией показано положение равновесия, сплошной – отклонение от него. Обратите внимание, что смещение вбок – строго горизонтальное, а не по дуге, как на рис. 1, поскольку расстояние до точки подвеса считается неограниченно большим.

Рис. 2. Бесконечно длинный маятник в поле тяжести Земли

Если бы поле тяжести было строго однородным, то есть всегда направленным вниз, как на рис. 1, то никакой возвращающей силы при строго горизонтальном смещении не возникло бы. Сила вбок возникает на рис. 2 потому, что реальное поле тяжести – неоднородное; сила тяжести направлена в каждой точке не строго вниз, а к центру Земли. При смещении грузика направление на центр отклоняется от вертикали, и именно отклонение от вертикали порождает возвращающую силу.

Обратите внимание, как поменялись ролями две силы! В обычной задаче (рис. 1) сила тяжести всегда направлена вниз, а сила натяжения нити в колеблющемся маятнике отклоняется от вертикали. Здесь все наоборот: направление нити, а значит, и сила ее натяжения все время остаются вертикальными, а отклоняется от вертикали уже сила тяжести. При этом, чтобы сила тяжести не изменялась по абсолютной величине, надо, чтобы угол отклонения был мал, то есть чтобы амплитуда колебания была много меньше радиуса Земли.

1

Voyenli K. and Eriksen E. On the motion of an ice hockey puck // American Journal of Physics, 1985, vol. 53, p. 1149. DOI: 10.1119/1.14071.

2

Farkas Z., Bartels G., Unger T., and Wolf D. E. Frictional Coupling between Sliding and Spi