Страница 3 из 6
2. Хоккейная задача
В прошлой задаче мы сразу нырнули в самую современную физику. А теперь давайте вынырнем и обратимся к повседневной жизни, поговорим о спорте. Спорт – это движение, а значит, в нем тоже можно углядеть интересные и подчас неожиданные физические явления. Возьмем, например, хоккей. При кистевом броске хоккеисты часто закручивают шайбу, так что она одновременно скользит по льду и вращается. Если движение шайбы не ограничивать размерами хоккейной коробки, то рано или поздно и вращение, и скольжение остановятся из-за трения о лед. Но что прекратится раньше?
Этот вопрос может удивить: неужели тут есть какие-то общие закономерности?! Да, есть, и мы сейчас их разберем.
Рассмотрим слегка упрощенную задачу. Пусть вместо шайбы у нас будет однородное узкое и плоское кольцо. Его запускают скользить по горизонтальной поверхности, придав некоторую начальную скорость и некоторое вращение (рис. 1). Между кольцом и поверхностью действует обычное сухое трение: сила трения пропорциональна прижимающей силе, не зависит от модуля скорости проскальзывания и направлена в противоположную от скорости сторону.
Рис. 1. Вращающееся тонкое кольцо скользит по горизонтальной поверхности (вид сверху)
Выясните, что остановится раньше – скольжение или вращение кольца.
Подсказка
Задача может показаться неприступной из-за того, что в условии практически ничего не задано. Нет ни размеров колечка, ни начальных скоростей скольжения и вращения, ни коэффициента трения. На самом деле, когда задача формулируется таким образом, это обычно служит намеком на то, что ответ не будет зависеть от конкретных параметров. Поэтому при решении вы сами можете взять какие-то значения для этих величин, но должны проследить, что они действительно исчезнут из ответа.
Кольцо участвует сразу в двух движениях: скользит и вращается. Из-за векторного сложения поступательного и вращательного движения разные части кольца движутся относительно поверхности в разные стороны (нарисуйте колечко, представьте, как оно движется, и убедитесь, что разные участки действительно в данный момент скользят по поверхности в разных направлениях). Поэтому выберите вначале какой-то маленький участок на кольце и сосчитайте силу трения, действующую именно на это место. Подумайте, как влияет эта сила на вращательное и поступательное движение, и попытайтесь усреднить эти два влияния по всему кольцу.
После этого проанализируйте формулы для трех случаев: когда скорости вращения и движения совпадают, а также когда скорость вращения очень мала или, наоборот, очень велика по сравнению с поступательным движением. Это наведет вас на мысль, как ответить на вопрос задачи.
Рассмотрим участок кольца, который находится под углом α к направлению движения (рис. 2). Пусть в данный момент времени скорость центра масс кольца равна v, а скорость вращения обода u = ωR, где ω – угловая скорость вращения в данный момент, а R – радиус кольца. Этот кусочек кольца участвует в поступательном и вращательном движении. Его скорость относительно поверхности показана на рисунке серой стрелкой. Она составляет угол β с направлением поступательного движения, причем
Рис. 2. Скорости и силы на маленьком участке кольца
Эти выражения выглядят громоздкими, но они получаются из обычных формул сложения двух векторов скоростей.
Сила трения, действующая на этот участок, по модулю равна F = μmg (здесь m – масса участка кольца) и направлена в противоположную от скорости сторону. У этой силы есть проекция на направление поступательного движения, – F cos β, и проекция на касательную к кольцу, которая притормаживает вращение, – F sin (β – α). Не стесняясь, подставим сюда выражения для синуса и косинуса угла β, а также учтем, что sin (β – α) = sin β cos α – cos β sin α:
У этой силы есть также проекция вбок, то есть перпендикулярно поступательному движению, но при усреднении по всему кольцу эта проекция обнулится. В этом можно убедиться математически, если рассмотреть второй участок, находящийся под углом π – α. Для него построение аналогичное, две притормаживающие проекции будут такими же, а сила вбок – ровно противоположная.
Для того чтобы посчитать эффект для всего кольца в целом, надо сложить эти силы по всему кольцу, то есть учесть элементы кольца, расположенные под всеми углами α. Это даст нам два ускорения, притормаживающих поступательное движение и вращение:
Угловые скобки обозначают усреднение по всем углам α; это последствие того, что мы общую силу поделили на общую массу. При желании его можно выразить через интегралы, но это не обязательно.
Заметьте интересную особенность полученных формул: при замене u на v выражения для au и av превращаются друг в друга. Такая «дуальность» задачи автоматически означает, что если бы начальные скорости u и v были равны, то ускорения au и av тоже были бы одинаковые и, значит, соотношение u = v выполнялось бы всегда, до самой остановки. А это, в свою очередь, означает, что вращение и скольжение в данном случае прекратятся одновременно. Смотрите, произошло математическое «чудо»: мы, просто глядя на формулы, вдруг получили ответ для нашей задачи, по крайней мере для одного начального состояния!
А что изменится, если начальные скорости u и v различаются? Тогда ускорения тоже будут отличаться, и, казалось бы, заранее не понятно, что будет замедляться быстрее. Чтобы выяснить, может ли при этом вращение остановиться раньше скольжения, рассмотрим ситуацию, когда скорость вращения u много меньше скорости поступательного движения v. Тогда для поступательного ускорения мы получим примерно av = −μg, словно вращения и не было. Для вращательного ускорения au получим маленькую величину порядка −μg·u/v, поскольку «большой» вклад, пропорциональный синусу, обнулился после усреднения по всем углам (более точное выражение см. в послесловии). Иными словами, если вращение очень медленное, то оно и замедляется намного медленнее, чем скольжение. Можно сказать и так: относительное замедление вращения (au/u) пропорционально относительному замедлению скольжения (av/v). Отсюда и следует, что скольжение и вращение не могут прекратиться в разные моменты времени.
Выше мы отметили, что задача математически симметрична относительно замены поступательного движения на вращательное. Поэтому мы совершенно аналогичным способом получаем и второй вывод: если поступательное движение намного медленнее вращения, то и замедляться оно будет намного медленнее вращения. Соответственно, и в этом случае нет никакой возможности остановить скольжение раньше вращения.
Итак, ответ: вращательное и поступательное движение прекратятся одновременно вне зависимости от того, каковы были их начальные скорости.