Страница 3 из 13
К примеру с помощью программы расчета геометрии коробовой кривой можно рассчитать геометрические размеры обжатого уплотнительного круглого резинового кольца.
Построение:
Задано:
Большая полуось ОА… ОА = ОP..
Малая полуось ОВ.
Алгоритм Расчета:
ОА = ОP.. Построением..
Построением: РВ = ОА – ОВ; ТВ = РВ..
АВ =sqrt( АО*АО + ОВ*ОВ ); АТ = АВ – ТВ; ХТ = АТ / 2;
Из подобия треугольников: АХ / АО = АE / АВ; отсюда:
АE = АХ*АВ / АО; аналогично: ВК = ( АХ + ВТ )* АВ / ВО;
ОE = ОА – АE; ОК = ВК – ОВ; ХВ = ХТ + ТВ = AX + BT;
Для расчета площади сечения коробовой кривой :
Большой радиус Rb = КВ; Зная стороны ВК и ХВ – находим угол сектора « W ».
Зная радиус Rb и угол сектора « W » – найдем площадь сектора.
Зная стороны ОК и ОE прямоугольного треугольника – найдем его площадь
и вычтем из площади сектора радиуса Rb.
Малый радиус Rm = EА; Зная угол « W » прямоугольного треугольника КХВ
определяем угол сектора малого радиуса как:
G = 90 – W; Далее: определим площадь сектора малого радиуса.
Площадь сечения коробовой кривой найдена.
Найдем диаметр круга равный по площади заданной коробовой кривой:
.d =sqrt( 4*S / Pii ); Где S – площадь заданной коробовой кривой.
Контрольный расчет:
Дано:
Большая ось = 80; Малая ось = 60;
Расчет:
Больший радиус = 50,0..
От оси до центра Б. радиуса = 20,0..
Меньший радиус = 25,0..
От оси до центра M. радиуса = 15,0..
Угол раствора Б. радиусов = 73,73979529168804..
Площадь ограниченная коробовой кривой = 3776,62456647;
Диам. Круга равной площади = 69,34369289;
Геометрия радиусной кривой.
Все расчеты по разным вариантам исходных данных:
Хорда L; Прогиб Н; Радиус R; Угол G.
Эти расчеты часто требуются для нахождения элементов детали имеющих форму сегмента окружности.
Расчет производим из следующих соотношений:
В = sqrt( R*R – X*X); L = X + X; H = R – B; G = аrcsin ( X / R );
Длина дуги = Pii * R * G / 90;
Площадь сектора Ss = Pii * R * R * G / 180;
Площадь треугольника под хордой St = L * B /2;
Площадь сегмента ( горбушки ) Sg = Ss – St;
Некоторые комбинации данных не позволяют прямого расчета,
тогда применяем метод компьютерного подбора.
Контрольный расчет:
Радиус R = 1000;
Диаметр D = R+R; D = 2000; Хорда L = 765,3668647;
Стрела прогиба максимальная H = 76,12046749;
Угол: Центр – Хорда: 2 * G = Au = 45 градусов..
Площадь сектора круга с углом = Au:
Sk=Pii*D*D* Au /(4*360); Sk = 392699,0816987241;
Площадь треугольника в секторе:
St=(L/2)* B; St = 353553,3905932738;
Площадь горбушки отсеченной хордой:
S = Sk-St; S = 39145,69110545033;
Длина дуги над хордой:
L=Pii*D*Au /360; L = 785,3981634;
Координаты радиусной кривой.
Построение части окружности методом подъема применяется тогда, когда радиус слишком велик
для традиционного построения, либо когда точка центра радиуса недоступна.
Построение части окружности методом подъема.
Построение:
Задаем максимальный размер хорды L.
Из середины максимальной хорды L строим перпендикуляр Н1.
Х1 = L / 2; В = sqrt( R*R – X1*X1); H1 = R – B;
Определили максимальную стрелу прогиба кривой H1.
Далее задаем произвольное расстояние от центральной оси Х2.
Находим стрелу прогиба Н2 = R – ( sqrt( R*R – X2*X2));
Находим высоту подъема в точке Х2: Hm = H1 – H2;
Задавая ряд текущих значений Х2 и рассчитывая соответствующие высоты подъема Hm
– получаем достаточное количество точек,
для построения радиусной кривой по точкам на этой кривой.
Контрольный расчет:
Исходные данные:
Радиус R = 10000;
Хорда максимальная заданная L = 8000;
Подъем максимальный в центре хорды = 834,8486100883201.
Задаем ряд точек:
От центра хорды до точки по оси Х-Х = 3000,0.
Величина подъема ( перпендикуляра ) = 374,2406242577763.
…
От центра хорды до точки по оси Х-Х = 2000,0.
Величина подъема ( перпендикуляра ) = 632,8075812210318.
…
От центра хорды до точки по оси Х-Х = 1000,0.
Величина подъема ( перпендикуляра ) = 784,7229811545203.
…
От центра хорды до точки по оси Х-Х = 500,0.
Величина подъема ( перпендикуляра ) = 822,3407878074104.
…
От центра хорды до точки по оси Х-Х = 0,001.
Величина подъема ( перпендикуляра ) = 834,848610088271.
Расчет геометрии треугольника.
Напротив сторон треугольника лежат одноименные углы.
Известны три стороны треугольника.
Напротив сторон треугольника лежат одноименные углы.
Сторона = a. Сторона = b. Сторона = c.
Решение:
.x=((b*b)+(c*c)-(a*a))/(2*b*c)… au=аrccos(x)… Угол А.
.x=((a*a)+(c*c)-(b*b))/(2*a*c)… bu=аrccos(x)… Угол В.
.cu=180-(au+bu)… Угол С.
....
Известны две стороны и угол между ними.
Сторона = a; Сторона = b; Угол = cu..
Решение:
.с= sqrt ((a*a)+(b*b))-(2*a*b*(cos(cu)))… Сторона « с ».
.x=((b*b)+(c*c)-(a*a))/(2*b*c)… au=arccos(x)… Угол А.
.x=((a*a)+(c*c)-(b*b))/(2*a*c)… bu=arccos(x)… Угол В.
..... .....
Известны два угла и сторона между ними.
Сторона = a; Угол = bu; Угол = cu;
Решение: .au=180-(bu+cu)… Угол А. .b=(a*(sin(bu)))/(sin(au))… Сторона В.
.c=(b*(sin(cu)))/(sin(bu))… Сторона С.
..... .....
Добавочный расчет в алгоритм Треугольника.
Решение:
R=a/(2*(sin(au))… R – Радиус описанной окружности.
.hc=b*(sin(au))… Высота из угла С.
.hb=a*( sin(cu))… Высота из угла B.
.ha=c*(sin(bu))… Высота из угла A.
S=a*ha/2.. Площадь треугольника.
Pe=a+b+c.. Периметр.
.rv=(S+S)/Pe… Радиус вписанной окружности.
…..
Контрольный расчет:
Напротив сторон треугольника лежат одноименные углы.
Сторона А = 15,77350269;
Сторона В = 14,14213562;
Сторона С = 11,54700538;
Угол А = 75; Угол В = 60; Угол С = 45..
Высота А= 10; Высота В = 11,1535507;
Высота С = 13,66025403;
Описанный радиус = 8,164965804;
Вписанный радиус = 3,804268442;
Площадь = 78,86751346;
……
Параметры сечений.
Расчет параметров сечения круга.
Сечение – Круг:
Диаметр круга d.
Контрольный расчет:
Круглое сечение: Диаметр = 80;
S=5026,548246; Jxx =2010619,298; Wxх=50265,48246.. .i=20,0…
Решение:
.s=d*d*Pii/4… Площадь круга.
.wr=Pii*d*d*d/16… Момент сопротивления радиальный.
.wx=wr/2… Момент сопротивления изгибу.
.jr=wr*d/2… Момент инерции радиальный.
.jx=jr/2 … Момент инерции по оси Х-Х.
.rm=sqrt(jx/s)… Радиус инерции оси Х-Х.
Расчет параметров трубного сечения.
Сечение – трубное.
Наружный диаметр d.
Внутренний диаметр dv.
.x=(d-dv)/2… Толщина стенки трубы.
.sn=d*d*Pii/4… Площадь отверстия.
.sv=dv*dv*Pii/4… Площадь по внешнему контуру.
.s=sn-sv… Площадь трубного сечения.