Страница 2 из 13
Ss= 110786,3476…
Площадь сегмента круга
Sg=( Ss – St ); Sg=( 55393,17378 – 28284,27125 ); Sg= 82502,07631…
Q = 7,85 * Sg * L / 1000000; Q = 7,85 * 82502,07631 * 400 / 1000000;
Q = 259,05652 кг…
……..
Вес кольца.
Вес кольца с профилем в сечении в виде трапеции.
Расчет ведется так: Деталь разбивается на три элемента.
1 – Диск с наружным диаметром – равным диаметру кольца толщиной наружной длиной сечения.
2 – Два усеченных конуса с диаметром основания равным диаметру кольца.
С диаметром вершины равным диаметру отверстия.
С высотой усеченного конуса равным Н = ( Внутренняя длина – Наружная длина ) / 2 ..
3 – Отверстие считается как диск толщиной равной внутренней длине.
Вес считаем: Вес = ( Вес диска + Вес усеченного конуса *2 ) – Вес диска отверстия.
Алгоритмы расчета веса элементов приведены ранее.
Кольцо с профилем широким на наружном диаметре.
Деталь так же разбивается на три элемента.
1 – Диск с наружным диаметром – равным диаметру кольца Ф Б и длиной Нб.
2 – Два усеченных конуса с диаметром основания равным диаметру кольца Ф Б.
С диаметром вершины равным диаметру отверстия Ф м.
С высотой усеченного конуса равным Н = ( Нб – Нм ) / 2 ..
3 – Отверстие считается как диск Ф м толщиной равной внутренней длине Нм.
Вес считаем: Вес = Вес диска Ф Б – ( Вес усеченного конуса *2 + Вес диска отверстия ).
Примечание: Часто приходится считать вес шкива клиноременной передачи.
Рассчитывают вес диска шкива не принимая во внимание канавки под ремни.
Рассчитывают вес вырезанного металла под одну канавку – как вес кольца.
Далее из веса диска шкива удаляют веса колец с профилем канавки клинового ремня.
…..
Расчеты веса элементов деталей быстрей выполнять используя программу. Программу можно скопировать из книги « Python 3 Расчет веса детали . ». Программа значительно экономит время и уменьшают вероятность ошибок в расчете.. Программы можно выполнить так же в Excel.
…
Примечание:
Для пересчета веса бруса из стали на вес бруса из другого материала –
умножаем вес стального бруса на коэффициент из таблицы В-01.
Расчеты геометрии.
Отрезок на плоскости.
Исходные данные:
Даны координаты концов отрезка:
Абсцисса x1 = 10; Ордината y1 = 20;
Абсцисса x2 = 50; Ордината y2 = 80;
Расчет:
Длина отрезка:
L= sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2));
L= sqrt((10-50)*(10-50))+((20-80)*(20-80));
L= sqrt( 5200 ); L= 72,11102551…
Угол между осью Х-Х и отрезком:
U= arctan((y2-y1)/(x2-x1));
U= arctan( 60 / 40 ); U= 56,30993247…
Отрезок в пространстве.
Исходные данные:
Абсцисса x1 = 10; Ордината y1= 20;
Высота z1 = 30;
Абсцисса x2 = 40; Ордината y2= 60;
Высота z2 = 80;
Примечание: Ось Z направлена в зенит.
Расчет:
Длина отрезка в пространстве:
L = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));
Длина отрезка L = 70,71068;
Длина проекции отрезка на плоскость Y-Z:
Lyz = sqrt((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));
Длина отрезка Lyz = 64,0312424;
L = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));
Длина проекции отрезка на плоскость Х-Z:
Lxz = sqrt((x1-x2)*(x1-x2))+((z1-z2)*(z1-z2));
Длина отрезка Lxz = 58,309519;
Длина проекции отрезка на плоскость Х-Y:
Lxy = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2));
Длина отрезка Lxy = 50;
Углы между проекцией отрезка на плоскости и осью:
Угол между осью Х-Х и проекцией отрезка на плоскость X-Y.
Uxy = arctan((y2-y1)/(x2-x1)); Uxy = 53,130102354…
Угол между осью Х-Х и проекцией отрезка на плоскость X-Z.
Uxz = arctan((z2-z1)/(x2-x1)); Uxz = 59,036243468…
Угол между осью Y-Y и проекцией отрезка на плоскость Y-Z.
Uyz = arctan((z2-z1)/(y2-y1)); Uyz = 51,340191746…
Определяем угол между плоскостью и отрезком в пространстве.
Угол между плоскостью X-Y и отрезком.
ULxy = arctan((z2-z1)/Lxy); ULxy = 45,0…
Угол между плоскостью X-Z и отрезком в пространстве.
ULxz = arctan((y2-y1)/Lxz); ULxz = 34,44990199…
Угол между плоскостью Y-Z и отрезком в пространстве.
ULyz = arctan((x2-x1)/Lyz); ULyz = 25,104090250…
Расчет линейной интерполяции.
Линейная интерполяция применяется при работе с табличными данными.
Из таблицы имеем две взаимосвязанных пары значений какой то функции.
Необходимо вычислить ординату при значении абсциссы близком взятой из таблицы пары абсцисс.
Например: Абсцисса x1 = 10; Ордината y1 = 20;
Абсцисса x2 = 90; Ордината y2 = 180;
Необходимо вычислить Ординату Yx при Абсциссе Хх = 50;
Примечание: Абсцисса Хх может также быть немного больше
или меньше крайних значений известных табличных Абсцисс.
Расчет: RF-01.
Yy = (((y2-y1)*(Хx-x1)) / (x2-x1))+y1; Yy = (((180-20)*(50-10)) / (90-10))+20;
Yy = ( 6400 / 80 )+20; Yy = 100;
Расчет центра масс.
Исходные данные:
Масса первого тела М1 = 40;
Масса второго тела М2 = 60;
От оси до центра массы первого тела Х1 = 20;
От оси до центра массы второго тела Х2 = 50;
Расчет:
От оси до центра массы системы двух тел:
Рассчитываем как моменты масс относительно Оси отсчета. RF-02/
Xx=((m1*x1)+(m2*x2))/(m1+m2); Xx=((40 * 20 )+( 60 * 50 ))/( 40 + 60 ); Хх = 38 …
Суммарная масса системы двух тел:
M=m1+m2; M= 40 + 60; M= 100 …
Расчет геометрии многогранника.
Многогранник:
Описанный диаметр d.
Вписанный диаметр dv.
Ширина грани L.
Угол между вершинами U.
Исходные данные:
Описанный диаметр d = 100…
Вписанный диаметр dv = 80,90169943749474.
Число граней многогранника n = 5…
Расчет:
Половина угла на грань:
Ur = 180 / n; Ur = 180 / 5; Ur = 36…
Расчет при известном описанном диаметре.
Радиус описанного диаметра:
R=d / 2; R=100 / 2; R= 50…
Радиус вписанной окружности:
Rv=(d/2)*cos( Ur ); Rv= 50 * cos( 36 );
Rv= 40,45084972…
Вписанный диаметр:
.dv=Rv+Rv; .dv= 40,45084972 + 40,45084972;
.dv= 80,90169944…
Максимальный размер между вершинами:
X = d * ( cos ( 90 / n ))…
Ширина грани:
Sg= 2*(sqrt( R * R – Rv * Rv )); Sg= 2*(sqrt( 50 * 50 – 40,45084972 * 40,45084972 ));
Sg= 58,77852523…
Площадь многогранника:
S= ( Sg * Rv * n ) / 2; S= ( 58,77852523 * 40,45084972 * 5 ) / 2; S= 5944,103227…
Расчет геометрии коробовой кривой ( овала ).
Коробовая кривая – этой кривой можно с достаточной точностью заменить овальную кривую.