Добавить в цитаты Настройки чтения

Страница 2 из 13



Ss= 110786,3476…

Площадь сегмента круга

Sg=( Ss – St ); Sg=( 55393,17378 – 28284,27125 ); Sg= 82502,07631…

Q = 7,85 * Sg * L / 1000000; Q = 7,85 * 82502,07631 * 400 / 1000000;

Q = 259,05652 кг…

……..

Вес кольца.

Вес кольца с профилем в сечении в виде трапеции.

Расчет ведется так: Деталь разбивается на три элемента.

1 – Диск с наружным диаметром – равным диаметру кольца толщиной наружной длиной сечения.

2 – Два усеченных конуса с диаметром основания равным диаметру кольца.

С диаметром вершины равным диаметру отверстия.

С высотой усеченного конуса равным Н = ( Внутренняя длина – Наружная длина ) / 2 ..

3 – Отверстие считается как диск толщиной равной внутренней длине.

Вес считаем: Вес = ( Вес диска + Вес усеченного конуса *2 ) – Вес диска отверстия.

Алгоритмы расчета веса элементов приведены ранее.

Кольцо с профилем широким на наружном диаметре.

Деталь так же разбивается на три элемента.

1 – Диск с наружным диаметром – равным диаметру кольца Ф Б и длиной Нб.

2 – Два усеченных конуса с диаметром основания равным диаметру кольца Ф Б.

С диаметром вершины равным диаметру отверстия Ф м.

С высотой усеченного конуса равным Н = ( Нб – Нм ) / 2 ..

3 – Отверстие считается как диск Ф м толщиной равной внутренней длине Нм.

Вес считаем: Вес = Вес диска Ф Б – ( Вес усеченного конуса *2 + Вес диска отверстия ).

Примечание: Часто приходится считать вес шкива клиноременной передачи.

Рассчитывают вес диска шкива не принимая во внимание канавки под ремни.

Рассчитывают вес вырезанного металла под одну канавку – как вес кольца.

Далее из веса диска шкива удаляют веса колец с профилем канавки клинового ремня.

…..

Расчеты веса элементов деталей быстрей выполнять используя программу. Программу можно скопировать из книги « Python 3 Расчет веса детали . ». Программа значительно экономит время и уменьшают вероятность ошибок в расчете.. Программы можно выполнить так же в Excel.

Примечание:

Для пересчета веса бруса из стали на вес бруса из другого материала –

умножаем вес стального бруса на коэффициент из таблицы В-01.

Расчеты геометрии.

Отрезок на плоскости.

Исходные данные:

Даны координаты концов отрезка:

Абсцисса x1 = 10; Ордината y1 = 20;

Абсцисса x2 = 50; Ордината y2 = 80;

Расчет:

Длина отрезка:

L= sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2));

L= sqrt((10-50)*(10-50))+((20-80)*(20-80));

L= sqrt( 5200 ); L= 72,11102551…

Угол между осью Х-Х и отрезком:

U= arctan((y2-y1)/(x2-x1));

U= arctan( 60 / 40 ); U= 56,30993247…

Отрезок в пространстве.

Исходные данные:

Абсцисса x1 = 10; Ордината y1= 20;

Высота z1 = 30;

Абсцисса x2 = 40; Ордината y2= 60;

Высота z2 = 80;

Примечание: Ось Z направлена в зенит.

Расчет:

Длина отрезка в пространстве:

L = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));

Длина отрезка L = 70,71068;

Длина проекции отрезка на плоскость Y-Z:

Lyz = sqrt((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));

Длина отрезка Lyz = 64,0312424;

L = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))+((z1-z2)*(z1-z2));

Длина проекции отрезка на плоскость Х-Z:

Lxz = sqrt((x1-x2)*(x1-x2))+((z1-z2)*(z1-z2));

Длина отрезка Lxz = 58,309519;

Длина проекции отрезка на плоскость Х-Y:

Lxy = sqrt((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2));

Длина отрезка Lxy = 50;

Углы между проекцией отрезка на плоскости и осью:



Угол между осью Х-Х и проекцией отрезка на плоскость X-Y.

Uxy = arctan((y2-y1)/(x2-x1)); Uxy = 53,130102354…

Угол между осью Х-Х и проекцией отрезка на плоскость X-Z.

Uxz = arctan((z2-z1)/(x2-x1)); Uxz = 59,036243468…

Угол между осью Y-Y и проекцией отрезка на плоскость Y-Z.

Uyz = arctan((z2-z1)/(y2-y1)); Uyz = 51,340191746…

Определяем угол между плоскостью и отрезком в пространстве.

Угол между плоскостью X-Y и отрезком.

ULxy = arctan((z2-z1)/Lxy); ULxy = 45,0…

Угол между плоскостью X-Z и отрезком в пространстве.

ULxz = arctan((y2-y1)/Lxz); ULxz = 34,44990199…

Угол между плоскостью Y-Z и отрезком в пространстве.

ULyz = arctan((x2-x1)/Lyz); ULyz = 25,104090250…

Расчет линейной интерполяции.

Линейная интерполяция применяется при работе с табличными данными.

Из таблицы имеем две взаимосвязанных пары значений какой то функции.

Необходимо вычислить ординату при значении абсциссы близком взятой из таблицы пары абсцисс.

Например: Абсцисса x1 = 10; Ордината y1 = 20;

Абсцисса x2 = 90; Ордината y2 = 180;

Необходимо вычислить Ординату Yx при Абсциссе Хх = 50;

Примечание: Абсцисса Хх может также быть немного больше

или меньше крайних значений известных табличных Абсцисс.

Расчет: RF-01.

Yy = (((y2-y1)*(Хx-x1)) / (x2-x1))+y1; Yy = (((180-20)*(50-10)) / (90-10))+20;

Yy = ( 6400 / 80 )+20; Yy = 100;

Расчет центра масс.

Исходные данные:

Масса первого тела М1 = 40;

Масса второго тела М2 = 60;

От оси до центра массы первого тела Х1 = 20;

От оси до центра массы второго тела Х2 = 50;

Расчет:

От оси до центра массы системы двух тел:

Рассчитываем как моменты масс относительно Оси отсчета. RF-02/

Xx=((m1*x1)+(m2*x2))/(m1+m2); Xx=((40 * 20 )+( 60 * 50 ))/( 40 + 60 ); Хх = 38 …

Суммарная масса системы двух тел:

M=m1+m2; M= 40 + 60; M= 100 …

Расчет геометрии многогранника.

Многогранник:

Описанный диаметр d.

Вписанный диаметр dv.

Ширина грани L.

Угол между вершинами U.

Исходные данные:

Описанный диаметр d = 100…

Вписанный диаметр dv = 80,90169943749474.

Число граней многогранника n = 5…

Расчет:

Половина угла на грань:

Ur = 180 / n; Ur = 180 / 5; Ur = 36…

Расчет при известном описанном диаметре.

Радиус описанного диаметра:

R=d / 2; R=100 / 2; R= 50…

Радиус вписанной окружности:

Rv=(d/2)*cos( Ur ); Rv= 50 * cos( 36 );

Rv= 40,45084972…

Вписанный диаметр:

.dv=Rv+Rv; .dv= 40,45084972 + 40,45084972;

.dv= 80,90169944…

Максимальный размер между вершинами:

X = d * ( cos ( 90 / n ))…

Ширина грани:

Sg= 2*(sqrt( R * R – Rv * Rv )); Sg= 2*(sqrt( 50 * 50 – 40,45084972 * 40,45084972 ));

Sg= 58,77852523…

Площадь многогранника:

S= ( Sg * Rv * n ) / 2; S= ( 58,77852523 * 40,45084972 * 5 ) / 2; S= 5944,103227…

Расчет геометрии коробовой кривой ( овала ).

Коробовая кривая – этой кривой можно с достаточной точностью заменить овальную кривую.