Добавить в цитаты Настройки чтения

Страница 8 из 17

В ходе кибернетического моделирования следует учитывать, что детерминационные отношения в управляющих системах складываются иначе, чем в физических. Доминирующей детерминантой физических систем является действие закона сохранения энергии. В кибернетике же установлено, что сохраняемость количества энергии входного воздействия и количества энергии выходного воздействия может нарушаться. В частности, могут возникать ситуации, когда малые по энергии входы способны вызывать масштабные по энергетическим характеристикам выходы. Очевидно, что такого рода ситуация моделируется на основе представления о системе, функционирующей в направлении сохранения заданной определённости достижения интегральной цели поведения системы. Соответствующее функционирование реализуется в замкнутом цикле, обеспечивающем сохранение общего количества циркулируемой информации.

Разумеется из-за шума в кибернетических системах часть информации неизбежно нивелируется в неопределённость. Тем не менее, в них на уровне управления возникает дополнительная информация, которая компенсирует потери. Отмечая действие закона сохранения информации, следует учитывать и возможности усовершенствования механизмов управления системой - за счет увеличения объема циркулирующей информации. Но новый объем информации опять-таки идёт на компенсацию неопределённости, связанной, например, с организацией процессов самоприспособления систем к новым условиям функционирования. И поэтому в общем случае правомерно говорить о проявлении классических законов сохранения в функционировании кибернетических систем, а вместе с тем - об изменении формы действия указанных законов

1.7. СИНЕРГЕТИЧЕСКАЯ МОДЕЛЬ САМООРГАНИЗАЦИИ СИСТЕМ

Синергетика - междисциплинарное направление исследований. В центре его стоит проблема самоорганизации. На это обстоятельство указывается в обширной литературе, посвящённой анализу предмета и методов синергетики /24/. Уточняя специфику её моделей, отмечают связь синергетического подхода с изучением процессов самоорганизации в условиях, отличных от гомеостатических /25/. Подобное отличие позволяет специфицировать предметную область синергетики от кибернетики, ибо последняя занимается самоорганизацией, связанной с перестройкой поведения системы без нарушения основной цели её функционирования.

Говоря о своеобразии способов раскрытия самоорганизации в синергетике, следует учитывать, что она обращена к изучению самоактивности систем. Синергетика доказывает, что существует класс систем, обнаруживающих способность к самопроизвольной организации, к упорядочению отношений между элементами, когда на такие отношения накладывается термодинамический закон дезорганизации. Используя этот подход, синергетика стремится объяснить механизм преодоления порога, отделяющего неживые объекты от высокоорганизованных живых образований.

Как достигается подобное объяснение? Основной путь здесь связан с применением уровневой модели системы. Причем такая модель предполагает неполную сводимость свойств макроуровня к свойствам микроуровня. Анализ накопленного в синергетике материала показывает, что в данной области познания можно описывать макроповедение системы с помощью особой группы обобщенных параметров. Одновременно сохраняется возможность описания микроповедения ее элементов с помощью большого числа дифференциальных уравнений. Такая особенность синергетической модели роднит ее с моделями, используемыми в термодинамике и статистической физике. Однако синергетика, в отличие от термодинамики и статистической физики, не предполагает молекулярно-хаотического распределения элементов системы. Напротив, в ней важную роль играет понятие "коллективного состояния", с помощью которого фиксируется способность элементов системы к коллективному выживанию и к поддержанию устойчивой организации системы под воздействием неопределённостных факторов внешней среды / 26/.

Известно, что в системах, находящихся в состоянии молекулярного хаоса, не может самопроизвольно рождаться и сохраняться устойчивая организация. Эти системы эволюционируют в направлении термодинамического равновесия, при котором неопределённость состояния их микроэлементов достигает максимума. Одновременно в них минимизируется уровень свободной энергии.





Что касается синергетического подхода, то он выявляет новую ситуацию, в которой условием возникновения коллективных (кооперативных) состояний элементов становится сильная неустойчивость системы. При сильной неустойчивости даже малое случайное отклонение на микроуровне может резко усиливаться и давать макроэффект, порождать новое макросвойство системы.

Г.И. Рузавин полагает, что в неживых системах синергетическое объединение элементов, способствуя возникновению устойчивой структуры, не сказывается на природе самих элементов /27/. Думается, однако, что синергетические процессы идут по другому. Теперь уже известно, что для их реализации требуется достаточно высокий уровень энергетической подпитки системы, а также необходимо возбуждение активности её элементов сверх той меры активности, которую они проявляют в стационарном термодинамическом состоянии. Лишь при таком условии потенциально любой из элементов может отклониться от среднего уровня флуктуации. Но именно при этом условии очень высока вероятность возникновения новых функциональных элементов в системе, для которых нормой становится сверхсильная флуктуация, если её сравнивать с прежними порогами случайных отклонений в поведении элементов. Подобные новые функциональные узлы способны возникать благодаря распространению поля активности отдельных старых элементов, а также благодаря группировке, суммированию и умножению их действия. Эту новую роль могут играть и вносимые в систему обновленные вещественные компоненты, обладающие резонирующими, каталитическими свойствами. В проведенных уже исследованиях показано, например, что на предбиологическом уровне организации систем проявляются своеобразные автопоэтические механизмы их обновления / 28/.

Говоря о вхождении в систему новых элементов и о вовлечении в неё с помощью последних новых процессов, надо иметь в виду, что абстрактно возможны два типа реакции старой системы: 1) отторжение новых элементов; 2) выживание и размножение новых элементов, а вместе с тем - возникновение нового режима функционирования системы. Можно уверенно предположить, например, что второй тип сопутствовал предбиологической эволюции. Современные исследования показывают, как могли возникнуть системы, устойчивые к появлению "мутантных" полимеров и одновременно приспособленные к росту своей организации. Ранее уже рассматривалась концепция М. Эйгена, которая даёт объяснение таким возможностям. Конкретный механизм возникновения соответствующих систем должен включать, по М. Эйгену, автокаталитический синтез новых молекул из молекул исходного множества /29/.

Синергетика, однако, вводит представление о дополнительных аспектах самопроизвольной организации, рассматривая условия отбора новых структур. Принятый в её рамках подход учитывает, что отбор не задаётся каким-либо априорным правилом, равно как не регулируется и не направляется к какой-либо заранее установленной пели. Напротив, результат отбора трактуется в ней как следствие особого флухтуационного поведения системы, когда флуктуации столь сильны, что выводят систему из прежнего равновесия со средой. При этом происходит вымирание вероятностей, с которыми поддерживался средний уровень равновесных флуктуаций, в силу чего обеспечивается прирост информации и под воздействием этого фактора идёт рост самоорганизации системы.

Интересно, что модель синергетнческой системы фиксирует процесс самопроизвольной организации как зависимый от определённого типа взаимодействий системы со средой. Это взаимодействие необычное. В науке чаще всего обращается внимание на его открытый характер, на установление обмена между системой и средой потоками вещества, энергии и информации. Однако, главное здесь состоит в том, что система за счёт резких флуктуаций, дающих макроскопический эффект, приобретает, по выражению И. Пригожина, диссипативную структуру /30/. Сегодня существуют значительные трудности в определении смысла данного понятия. Ясно, по крайней мере то, что оно позволяет уловить новые аспекты системной картины мира, не раскрываемые другими понятиями системного ряда. В исследованных синергетикой ситуациях диссипативная структура представляется как форма динамической организации, которая выходит за рамки динамики хаоса и обнаруживает законы неклассической термодинамической эволюции. Наличие этой структуры свидетельствует, что система может длительное время пребывать в состоянии, далёком от теплового равновесия. Диссипация означает рассеивание беспорядка системы в окружающую среду, но вместе с тем растёт внутренняя упорядоченность некой глобальной ситуации, обладающей неравновесностью / 31/.