Страница 4 из 33
Чтобы избежать такой бесконечности и сложности рассуждений, Рейхенбах вынужден обратиться к дополнительной предпосылке, являющейся внешней по отношению к статистической трактовке вероятности, которую он отстаивал. Роль этой предпосылки играет у него понятие «неквалифицированной ставки», которую он называет также «слепой». Под ней Рейхенбах понимает высказывание, истинность которого принимается без доказательства. Но, в таком случае, здесь выдвигается постулат, не имеющий эмпирического эквивалента, что является незаконным допущением с позиций строго частотной трактовки вероятности.
Существенным пунктом, приведшим попытку Рейхенбаха к неудаче, является, на мой взгляд, несовместимость принимаемого им решения проблемы смысла вероятностных суждений с решением проблемы их значения. Позиция Рейхенбаха в этом вопросе двойственная.
С одной стороны, принимая частотное истолкование вероятности, он ратовал будто бы за объективность вероятностных суждений, считая их одновременно средством эмпирического предвидения. Но правомерность употребления вероятностных суждений видел не в том, что они имеют объективное содержание, а в том, что таков характер нашего познания, которому изначально свойственна вероятностная природа.
Вероятностную логику с ее центральным понятием «вероятность» Рейхенбах объявляет некой «абстрактной средой» всего естествознания, его фундаментом, который нельзя обосновать, но возможно лишь открыть и исследовать [21]. Отсюда получается, что проблему тестификации, которую нельзя решать, отвлекаясь от вопроса об отношении вероятностных суждений к объективной реальности, Рейхенбах пытался просто обойти.
Здесь важно снова подчеркнуть, что объективность частотного истолкования вероятности в этой концепции - мнимая, поскольку в ней не дается качественное объяснение устойчивости частот появления какого-либо признака в серии испытаний. Кроме того, в подходе Мизеса-Рейхенбаха игнорировалось по существу важное обстоятельство, что последовательность, называемая коллективом, составляется из индивидуальных и независимых событий, обладающих определенной свободой поведения по отношению друг к другу. И потому, именно свойства таких событий должны учитываться при содержательном истолковании вероятности.
Итак, правомерно ли настаивать на онтологическом статусе понятия вероятности? Есть позиция, согласно которой утверждается «...кроме количественных отношений, о которых explicite говорят вероятностные суждения, мы имеем дело с определенными отношениями и физическими влияниями, мерой которых (в каком-то аспекте) является математическая вероятность» [22].
При таком подходе ясно формулируется требование рассмотрения проблем объективного содержания понятия вероятности в определенных детерминистических рамках, чего нет при частотном подходе, развиваемом Мизесом и Рейхенбахом. Требованию детерминизма соответствует основное убеждение, состоящее в том, что вероятность обнаруживается через относительную частоту и представляет собой какую-то глубокую характеристику связи условий эксперимента с его результатами [23]. Выше я отмечал, что в ряде работ, посвященных анализу вероятностной проблемы, высказывалась мысль, что эта связь получает дополнительное обоснование в свете системных представлений. Обычно ее характеризуют при обсуждении содержания статистических законов. Здесь я не буду касаться данного вопроса, поскольку подробное его рассмотрение составляет предмет третьей главы.
Сложности частотного подхода к определению понятия вероятности свидетельствуют об ограниченности данной концепции, обнаруживая тем самым, что частотное понятие вероятности - это понятие не в своей общей форме, как пытались представить авторы данной концепции, но лишь понятие в особенной форме. Этот же самый вывод следует из анализа роли аксиоматического подхода, конкретными интерпретациями которого являются и классическое, и частотное понятия вероятности.
Аксиоматический подход (А. Н. Колмогоров). В его рамках не дается явного развернутого определения понятия вероятности, но оно задается через систему аксиом примерно так же, как алгебраические неизвестные определяются системой алгебраических уравнений. Вероятностью в таком случае можно назвать любое понятие, удовлетворяющее требованиям системы аксиом.
Не останавливаясь на аксиоматическом подходе к определению понятия вероятности подробно, замечу лишь, что подобный подход расширил область приложения теории вероятностей практически беспредельно [24]. Дело в том, что по своему существу аксиоматическое определение не фиксирует того класса объектов, к которому оно может быть приложимо, но связано лишь с набором формальных признаков. Под эти признаки посредством идеализации может быть подведено бесконечное множество классов объектов. Соответственно можно иметь бесконечное множество интерпретаций той или иной аксиоматики.
В настоящее время наибольшим признанием пользуется аксиоматика А.Н.Колмогорова, представляющая вероятность одним из случаев меры множества [25]. В то же время, в математической литературе показано, что классическое и частотное определения, формулируемые в явном виде, являются лишь одним из возможных интерпретаций аксиоматически построенной теории вероятностей, поскольку фиксируют класс объектов приложения и допускают формализацию, удовлетворяющую требованиям аксиом.
С этих позиций реальным достижением мизесовского подхода является как раз то, что была показана возможность новой (в сравнении с классической) интерпретации понятия вероятности. А это, в свою очередь, подсказывает определенные возможности дальнейшей формализации математической теории.
Следует отметить также, что трудности строго эмпирической трактовки вероятности, отмеченные выше при обсуждении проблемы тестификации, свидетельствуют в пользу необходимости разработки теоретико-содержательных представлений о вероятности, т.е. выработки представлений о вероятности как о теоретическом понятии. Соответственно этому, по-иному должен ставиться вопрос об эмпирической проверке вероятностной гипотезы. Таковую не может исчерпать эмпирический материал относительных частот.
Общий смысл постановки вопроса о разработке представлений о вероятности как теоретическом понятии выводит за рамки чисто математической проблематики. Полагаю, что он касается поиска содержательных форм вероятностного мышления. И здесь в первую очередь возникает задача соотнесения вероятности с детерминистическими представлениями в том аспекте, который ориентирует на отражение сложных отношений между объектами.
2. Проблема сложности и вероятностный детерминизм
Теперь понятно, что переход к аксиоматическому построению и развитию математической теории вероятностей выводит этот раздел знания в сферу абстракций чрезвычайно высокого уровня. При этом окончательно утрачивается связь современного понятийного аппарата теории вероятностей с исходными наглядными представлениями, выступавшими в роли интерпретаций первых понятий этой теории, которые, в свою очередь, служили отражением предшествовавшего практического опыта и определенного состояния науки.
Утрата наглядности онтологической картины, соответствующей нынешнему движению концептуального аппарата данной теории, со всей остротой поставило вопрос об основаниях введения понятия вероятности в состав большинства научных теорий. В свете данного обстоятельства и на фоне столкновения науки с проблемой сложности актуальными стали вопросы интерпретации вероятности. В то же время, трудности наиболее известных из них свидетельствуют об ограниченности традиционных путей обоснования данного понятия и необходимости обращения к иным средствам.
Надо заметить, что существуют два основных канала ввода в научный обиход понятий высокой степени абстрактности, аналогичных понятию вероятности. Соответственно, можно указать на два способа оправдания обоснования их ввода.
Напомню, что характеристика первого способа дается на базе понятий «операциональная стратагема» и «оборачивание метода», использованных К.Марксом в его «Математических рукописях» [26]. По Марксу, понятия и теории определенной степени абстракции, будучи ненаглядными по своей гносеологической природе (вследствие отсутствия непосредственной цепи, ведущей от них к сфере конкретных предметов и отношений), приобретают операциональную наглядность, становясь формой, знаком некоторой оперативной стратагемы[27].