Страница 30 из 34
Другая концепция утверждает наличие субуровня. В ее рамках строятся «составные модели» частиц.
Для обнаружения этого уровня предполагается огромная энергия, недоступная современной экспериментальной технике. Таков, например, смысл теории «кварков», где проводится идея существования простейших объектов симметрии групп SU3 и SU6 , подобно тому, как нуклон является простейшим мультиплетом изотопической группы [97]. В основе данной концепции лежит идея структурной неисчерпаемости материи.
В настоящее время отсутствуют достаточно убедительные аргументы в пользу той или другой концепции. В значительной мере это обусловлено неразвитостью соответствующих разделов физического знания. Однако, независимо от решения физической стороны вопроса можно утверждать, что мера сложности системы не должна пониматься как простое число уровней ее подсистем. Подобное обедненное представление о сложности способно лишь дискредитировать эту исключительно плодотворную идею современной науки. Уже ближайшее рассмотрение показывает, что дело обстоит иным образом. Скажем, в технологической линии, использующей конвейер, рабочий оказывается элементом механической системы. Но это не может служить основанием для признания большей сложности конвейерного производства, нежели человеческого организма. Примеры такого рода легко умножить.
Все это означает, что сам принцип неисчерпаемости материи следует трактовать в единстве его количественной и качественной сторон. В равной мере это же применимо к истолкованию природы сложности. Необходимость такого подхода получает дополнительное подтверждение на основе развитого Дж. фон Нейманом представления о переходе некоторого порога самоорганизации при увеличении числа элементов системы. К осознанию качественных характеристик сложности приводит и такой факт, как невозможность создания простого авторегулятора для систем некоторой пороговой сложности. Теоретическое осмысление этого факта осуществимо на базе закона необходимого разнообразия, сформулированного Эшби в рамках кибернетики.
Признание качественного и количественного аспектов принципа неисчерпаемости материи означает по существу, что сложность выразима в форме прерывности; и тем самым неотъемлемым ее моментом выступает простота. Соответственно, каждый уровень сложности предполагает свое элементарное. Здесь прав, например, В. И. Свидерский, когда подчеркивал, что тело, организм, рассматриваемый как система, состоит не из клеток, органических молекул или атомов, но из органов [98]. В данном случае отмечалось объективное упрощение, свойственное самой живой природе.
С гносеологической точки зрения разработка качественного аспекта сложности предполагает обоснование и нахождение средств введения конечности, ограничения и в этом смысле упрощения сложности. Особую значимость в решении данной задачи приобретает опора на принцип детерминизма, существенным моментом содержания которого является требование определенности поведения системы. А это служит обобщенным выражением ее упорядоченности и организованности на некотором метасистемном уровне.
Следует отметить, что на современном этапе системного познания, которому соответствует высокая степень абстрактности и ненаглядности системных представлений (понятие «система» мы рассматриваем как теоретическое, солидаризируясь в этом, например, с Эшби [99]), происходит своеобразное оборачивание метода качественного исследования в данной области. Средством фиксации качества становится теоретическое формулирование меры. Такой подход предполагает задание меры абстрактного качества путем обращения к более глубоким теоретическим соображениям методологического порядка, которые выступают здесь в роли метасистемного уровня. К их числу относится принцип детерминизма, служащий важным регулятивным правилом построения аппарата системного описания.
Основной методологический прием, посредством которого оказывается возможным введение конечности в область сложности, исходя из принципа детерминизма, состоит в выделении некоторого набора переменных, однозначно соответствующего состоянию системы.
В точных науках такой набор фиксирует количественно измеримые свойства системы, выражающие ее качественную определенность. Если использовать представление о фазовом пространстве, тогда детерминистический характер этого способа описания обнаруживается в том, что здесь устанавливается взаимно однозначное соответствие между множествами значений многомерного вектора и множеством состояний системы. Изменение же любой переменной означает переход системы в другое состояние. Вся совокупность точек n-мерного пространства дает полный набор возможных состояний системы, а движение представляющей точки характеризует то или иное поведение системы.
Подобный прием является достаточно общим и, если согласиться с Эшби, представляет собой известное обобщение практики экспериментального исследования [100]. Здесь верно подчеркивается, что самое описание наблюдаемой системы осуществимо лишь тогда, когда удается выделить момент определенности, присущий ее поведению. Под этим углом зрения Эшби, например, разрабатывал теорию «черного ящика».
Выдвижение на первый план признака определенности непосредственно сопряжено с требованием, получившим, по Эшби, название информационной замкнутости системы [101]. В данном случае термин «замкнутость» очевидно является синонимом «конечности», относимой к тому количеству информации, которое характеризует поведение системы. Возникает однако вопрос о том, насколько оправдано представление о конечности информации, если учитывать принцип неисчерпаемости материи вглубь. Иными словами, можно ли в конечной форма достаточно удовлетворительно выразить бесконечное, и какова с этой точки зрения ценность средств и приемов, опирающихся на требование конечности информации.
Ближайшее оправдание требования информационной замкнутости системы состоит в практической природе экспериментального исследования. Такого рода исследование подчинено идее результативности, так что среди всех приемов выбирается обычно тот, который позволяет получить результат за достаточно ограниченный период времени и с помощью конечного числа операций.
Самая возможность реализации этой идеи опирается на объективный характер упрощения, присущий любому уровню материи. В силу же признания качественного аспекта сложности получает смысл утверждение, что простота простоте рознь. Данное обстоятельство находит свое выражение в разнообразии типов идеализаций, соответствующих видам простоты (одновременно и сложности).
Обычный прием, сложившийся в рамках классической науки, представлен как раз названным выше способом выделения конечного числа значимых переменных. Учет определенности достигается здесь благодаря тому, что отыскивается полный набор существенных свойств, наличие которых дает данное качество (скажем, в виде конкретной формы поведения системы). Нетрудно обнаружить предельный характер абстракции качественной определенности, которой руководствуются в процессе реализации данного приема. И действительно, неопределенность поведения, следующая из неполноты заданности параметров системы, здесь трактуется как свидетельство того, что отсутствует сам предмет, выражаемый понятием система. Таким образом предполагается, что с системой имеем дело лишь тогда, когда налицо строгая определенность. Если подойти с логической точки зрения, то предельность идеализации определенности выявляется в использовании в рассматриваемом случае принципа «да-нет», поскольку здесь принимается: определенность тождественна системе и простоте, неопределенность же выводит исследование за границы простоты. Подобный класс систем (соответственно - простоты и сложности) Эшби называл машинно-подобными. Их поведение целиком определяется значениями переменных. Представление о машинно-подобных системах имеет широкую сферу приложимости. Классическим образцом этого типа могут служить гидромеханические системы, описываемые уравнением Бернулли, термодинамические системы, описываемые уравнением Менделеева-Клапейрона и т. д.