Добавить в цитаты Настройки чтения

Страница 11 из 34

Полезно отметить, что указанная выше особенность вероятностно-статистического обобщения представляет собой новое научное средство выражения гибкости объективного мира. Причем, основное идейное содержание данного способа обобщения совпало с кругом идей формирующегося в ту же эпоху системного подхода, который был ориентирован на разработку средств выражения структурно-функциональной динамики и сложности материальных систем.

Наука и практика, начиная с середины XX столетия, столкнулись с ситуацией, которая получила свою оценку в терминах «сложность» и «неопределенность». В целом ряде научных областей было признано, что сложность не сводится к учету множественности составных элементов материального объекта. Пристальное внимание привлек еще один аспект сложности. Он выявился в разнообразии взаимодействий данного объекта как целого со своим окружением. И эти взаимодействия несут на себе печать неопределенности, поскольку всегда имеют открытый характер. Для теоретического описания подобной ситуации стали привлекаться такие концептуальные формы, которые, сохраняя рационализм, давая вполне определенную картину явлений действительности, могли бы учитывать ее гибкую и неопределенностную природу.

Теперь в центр внимания науки передвинулись вопросы, касающиеся изучения таких целостностей, демонстрирующих гибкость и неопределенность связей и взаимодействий с окружающей средой. И с этого момента во весь рост встала задача нахождения способов выражения структуры такого рода целостностей. Статистический тип закона благодаря использованию языка вероятностных распределений послужил как раз моделью такой структуры.

Здесь я говорю об идейном родстве вероятностно-статистического и системного подходов. Но оно нашло свое проявление также в реальной истории науки. На протяжении многих десятилетий пути их формирования проходили в тесной зависимости друг от друга.

Наглядным подтверждением тому является становление молекулярно-кинетической теории теплоты, в рамках которой природа термодинамических систем поучила статистическое истолкование. Одновременно развитие физической теории в этом направлении привело к переформулированию ряда однозначных (динамических) законов посредством терминов вероятности (например, больцмановское статистическое истолкование закона энтропии). Смысл подобной переформулировки состоит в том, что некоторые интегральные характеристики термодинамических систем (температура, теплоемкость, энтропия и т.д.) оказались выводимыми из характеристик более глубокого уровня посредством статистического приема обобщения. Наиболее развитый аппарат такого вывода или перехода был предложен теорией так называемых «статистических ансамблей» Гиббса.

Современные исследования в области теории информационных систем также показали важность применения статистики для раскрытия природы информации. Например, Н.Винер писал: «... для господина Бигелоу и для меня уже стало очевидным, что техника управления и техника связи неотделимы друг от друга и что они концентрируются не вокруг понятий электротехники, а вокруг более фундаментального понятия сообщения... Сообщение представляет собой дискретную или непрерывную последовательность измеримых событий, распределенных во времени, т.е. в точности то, что статистики называют временным рядом». [7] И несколько далее он продолжал: «Приняв определенную статистику для временного ряда, можно найти явное выражение для среднего квадрата ошибки предсказания при данном методе и на данное время вперед. А располагая таким выражением, мы можем свести задачу оптимального предсказания к нахождению определенного оператора, при котором становилась бы минимальной некоторая положительная величина, зависящая от этого оператора». [8] Здесь существенным оказалось признание принципиального значения статистического характера сообщения для получения определенного предсказания или информации.

В своей кандидатской диссертации (1973 г) автор уже говорил о взаимозависимости и взаимовлиянии вероятностного и системного подходов. Теперь я вновь подчеркиваю наличие определенной тенденции в их взаимозависимости. Принимая во внимание характер идеализаций того или другого, представляется правомерным рассматривать современный системный подход как развитие вероятностного. В самом деле, специфическая природа статистических закономерностей получает свое определение из особенностей так называемого массового случайного явления. Подобный способ определения используется во многих руководствах по теории вероятностей. Например, В.Е.Гмурман пишет: «... достаточно большое число однородных случайных событий, независимо от их конкретной природы, подчиняется определенным закономерностям, а именно - вероятностным закономерностям». [9]

Напомню, что в математике под массовым случайным явлением понимают особый класс массовых явлений, удовлетворяющий следующим условиям:

1.      Число группировок случайных событий должно быть конечным.

2.      Совокупность группировок образует так называемую полную группу событий.





3.      Перечисленные в пункте 1 группировки случайных событий являются несовместимыми.

4.      События, образующие полную группу, являются равновозможными.[10]

Данная математическая абстракция представляет собой довольно удачную модель, реальных массовых явлений, традиционно служивших объектом приложений вероятностно-статистических методов исследования (социальная статистика, атомно-молекулярные явления газовой динамики и др.). Она послужила исходным пунктом формирования первичных понятий, приспособленных для выражения статистических закономерностей.

Однако то основание, на базе которого складывались первые представления о статистических закономерностях, довольно быстро обнаружило свою ограниченность, оказавшись тесным для многих приложений. Предметом критики, прежде всего, стала идея равновозможности (или равновероятности). Основные моменты этой критики отмечены были выше при обсуждении классического подхода к определению понятия «вероятность», и здесь я не буду затрагивать их во всех подробностях.

В рамках обсуждаемого вопроса существенное значение имеет следующее: равновозможность (или равновероятность) каждого из полного набора случайных событий можно истолковать как их равноценность с некоторой вероятностной точки зрения. Иными словами, если а, а2 ...а представляют собой полную группу событий, то любое а можно рассматривать в качестве равноценного параметра, элемента или альтернативы данной совокупности. Однако значительное число задач, скажем, таких, которые связаны с предсказаниями на основе анализа временных рядов (сообщений) требуют отказа от идеи равноценности статистических параметров. Например, построение оператора для восстановления истинного сообщения из искаженного шумом прошлого сообщения включает в качестве основополагающей идею «наилучшего значения» одного или некоторой совокупности параметров, характеризующих с известной мерой ошибки истинное сообщение». [11] Дело, таким образом, идет о поиске «подходящей интерпретации «наилучшего значения», какого-либо из этих статистических параметров или множеств статистических параметров». [12]

В науке возникла проблема выбора критерия такого значения. С ней оказалось связано-решение более общей задачи - задачи оптимального предсказания, разработка общей теории оптимизации. В итоге можно констатировать, что боле общая постановка задач вероятностно-статистического подхода вводит исследование в рамки системного подхода. Осознав это обстоятельство можно перейти к исследованию глубинных общеметодологических истоков формирования статистических методов познания.

2.2. Категориальные основания статистических закономерностей

Накопился богатый материал, позволяющий оценить основания перехода к статистическим закономерностям в современной науке: в свете принципа причинности, единства необходимости и случайности, возможности и действительности и т.п.