Страница 16 из 17
В связи с этим подъем уровня Ферми приводит к сближению энергий перекрывающихся орбиталей металла и адсорбата и, следовательно, к образованию более прочной адсорбционной связи и более сильному ослаблению связи в молекуле.
Понижение уровня Ферми будет приводить к обратному результату.
Закономерности изменения характеристик d-зон переходных металлов рассмотрены ниже.
Квантово-механические расчеты положения уровня Ферми для металлов первой переходной серии (3d-металлы) проведены впервые О. Андерсеном (рис. 31).
Описание происходящих изменений приведено по [25]: центр d-зоны и уровень Ферми при смещении вправо по переходному периоду опускаются в связи с увеличением положительного заряда атомного ядра.
Поскольку атомные d-орбитали становятся компактнее, то это приводит к уменьшению степени перекрывания, приводящему к сужению зоны. В то же время увеличивается заполнение зоны, что поднимает уровень Ферми. В конечном счете первый фактор перевешивает, что приводит к опусканию уровня Ферми.
Рис. 31. Энергетические уровни d-зоны металлов
первого переходного периодов
Полученные закономерности справедливы и для металлов второй и третьей переходных серий d-металлов, а также при перемещении внутри группы сверху вниз, что представлено на графике ниже для положения центра d-зоны [26].
Как следует из рис. 32, центр зоны смещается вниз внутри периода при движении слева направо и при перемещении вниз внутри группы.
Рис. 32. Положение центра d-зоны для трех серий переходных металлов. Заметим, что центр d-зоны смещается вниз при движении вправо
по Периодической таблице. При полном заполнении d-зоны смещение ее центра вниз продолжается, и она превращается во внутренний уровень, не влияющий на химическое поведение металла [26]
При переходе от 4d-металлов к 5d-металлам наблюдается небольшое изменение по сравнению с переходом от 3d-металлов, причиной которого является заполнение f-AO, происходящее на этом переходе.
Слабое экранирование ядерного заряда f-электронами приводит к лантаноидному сжатию в третьем переходном периоде.
Атомные, ковалентные и ионные радиусы 5d-металлов лишь немногим больше, чем у 4d-металлов, несмотря на увеличение электронной оболочки на 14 электронов.
С учетом изложенного следует важный для понимания гетерогенного катализа вывод о том, что энергия связывания адсорбата с поверхностью металла и, следовательно, степень активации молекулы уменьшаются в периоде слева направо и по группе сверху вниз. Так, металлы, расположенные в левой части переходного периода, такие как железо, рутений и уран (6d-элемент), способны активировать такую прочную и инертную молекулу, как N2, и являются катализаторами синтеза аммиака.
Fe, Co и Ru адсорбируют СО диссоциативно и являются катализаторами синтеза Фишера – Тропша, проходящем через образование и гидрирование С-фрагментов.
В отличие от них, Pd, Pt, Ir и Cu адсорбируют СО без диссоциации и не могут быть катализаторами этого процесса.
В ряде случаев это может быть преимуществом. Например, при синтезе метанола, где диссоциация СО не требуется, меднохромовые катализаторы нашли широкое промышленное применение и являются основными катализаторами получения метилового спирта.
Платина находится внизу группы и в конце третьего переходного периода. Оба фактора приводят к понижению уровня Ферми и обусловливают более слабое связывание с молекулами адсорбата и, следовательно, более низкую активность платины в активации реагентов по сравнению с другими переходными металлами. К примеру, никель является более активным катализатором в реакциях дегидрирования циклогексана и гидрогенолиза н-гексана, причем активность в последней реакции выше, чем в дегидрировании.
Фактором, дополнительно понижающим активность платины, является практически полное заполнение зоны, что ограничивает образование σ-связей с молекулами-донорами электронов и не позволяет реализовать синергизм, возникающий при π- и σ-взаимодействии. Однако это не означает, что платина является не лучшим выбором в качестве катализатора риформинга. Для ответа на этот вопрос необходимо рассмотреть такие не менее важные характеристики катализатора, как селективность, стабильность и чувствительность к отравлению.
Не секрет, что гетерогенные катализаторы имеют худшую селективность по сравнению с гомогенными катализаторами, что обусловлено неоднородностью поверхности и существованием на ней различных реакционных центров. В связи с этим на гетерогенных катализаторах проходят как целевые, так и побочные реакции реагентов.
Селективность металлической функции катализатора риформинга – это его способность осуществлять основные реакции дегидрирования-гидрирования без заметного протекания побочной реакции гидрогенолиза углерод-углеродной связи, которая приводит к снижению выхода С5+ и водорода.
Упрочнение дативной σ-связи при использовании более активных переходных металлов ускоряет оба превращения, но гидрогенолиз сильнее и, таким образом, приводит к снижению селективности. Так, к примеру, никель по сравнению с платиной является более активным катализатором в реакциях дегидрирования циклогексана и гидрогенолиза н-гексана, причем активность в последней реакции выше, чем в дегидрировании.
В качестве другого примера ниже приведены данные Синфельта [36] по активности и селективности конверсии метилциклопентана, полученные на монометаллических катализаторах Pt/Al2O3 и Ir/Al2O3 с одинаковым содержанием металла. Иридиевый катализатор является значительно более стабильным и за счет этого обеспечивает более высокую конверсию МЦП, однако имеет худшую селективность по бензолу (39 % против 66 % на платине) в связи с повышенной активностью в гидрогенолизе.
Композиции Ir/Al2O3 были запатентованы в 1972 и 1975 годах, однако промышленное внедрение нового процесса, разработанного как конкурента платформинга, так и не состоялось, и позднее был внедрен менее радикальный вариант платиноиридиевого катализатора с улучшенной селективностью.
Платина обеспечивает лучшее сочетание активности и селективности по сравнению с другими металлами. Определенная гидрогенолизующая активность платины даже полезна и необходима, так как позволяет контролировать молекулярную массу олигомеров и предотвращать образование графитизированных отложений на поверхности кластеров активного металла, которые являются основной причиной снижения стабильности катализатора.
Чувствительность катализатора к отравлению сероводородом также связана с прочностью дативной связи, образуемой между металлом и атомом серы.
Сильное связывание, реализуемое с Re, Ir, Ni или Pd, дезактивирует металлическую функцию катализатора, слабое связывание минимизирует ингибирующий эффект сероводорода.
Указанные преимущества позволяют понять причины столь долгого сохранения монопольного положения платины как базового металла катализатора риформинга.
Принцип Сабатье и вулканообразные кривые Баландина. Принцип Сабатье устанавливает качественный критерий для того, чтобы та или иная субстанция могла быть хорошим катализатором химической реакции.
По Сабатье взаимодействие субстанции и субстрата должно быть just right, в самый раз, то есть и не очень слабым, и не очень сильным.