Добавить в цитаты Настройки чтения

Страница 3 из 7

Важнейшей характеристикой Ньютоновского закона тяготения считается то, что сила между массами зависит в обратной степени от расстояния между ними, возведенного в квадрат, то есть, если вдвое уменьшить расстояние между двумя предметами, вы получите силу в четыре раза больше. Предметы, которые находятся ближе друг к другу, испытывают более сильную тягу, что объясняет, почему более близкие к Солнцу планеты вращаются по орбитам быстрее. Это также означает, что предметы беспорядочной кучи будут приближаться друг к другу и по мере сближения спрессовываться все более плотно за счет усиливающейся силы тяготения.

Эта возрастающая сила очень важна для существования Солнца и является конечным источником солнечного света. Солнце – не твердый объект, а скорее обширное скопление горячего газа, которое сохраняется лишь за счет взаимного гравитационного притяжения всех его отдельных атомов. В то время как гравитация возглавляет наш список в терминах повседневного воздействия, ее можно назвать самым слабым фундаментальным взаимодействием по сравнению с остальными, причем уму непостижимо, во сколько раз: гравитационная сила между протоном и электроном составляет всего лишь 0.000000000000000000000000000000000000001 часть электромагнитной силы, которая держит их вместе в пределах атома. Невероятное количество материи находится в солнце, порядка 2,000,000,000,000,000,000,000,000,000,000 килограммов. Она создает гигантскую совместную гравитационную силу, притягивая все, что находится поблизости.

Звезда, подобная Солнцу, начинает жизнь как небольшое облако с чуть более высокой плотностью межзвездного газа (по большей части водорода) и пыли. Лишняя масса в этой области притягивает к себе больше газа, увеличивая тем самым ее размер, и это создает большое гравитационное притяжение, чтобы, в свою очередь, притянуть еще больше газа. И по мере того как новый газ попадает в область растущей звезды, он начинает разогреваться.

На микроскопическом уровне один атом, притягивающийся к протозвезде[11], разгоняется во время падения внутрь нее точно так же, как кусок скалы, падающий на землю. Вы можете теоретически описать поведение газа в терминах скорости и направления каждого индивидуального атома, но это до смешного непрактично даже для предметов гораздо более мелких, чем шар газа размером с Солнце, не только из-за количества атомов, но и потому что все атомы взаимодействуют друг с другом. Невзаимодействующий атом будет притянут к центру газового облака, разгоняясь по мере прохождения своего пути, затем он проскочит насквозь и выйдет с другой стороны, замедлится, остановится и повернет обратно, чтобы повторить этот процесс. Реальные атомы, однако, не следуют таким гладким путем: в дороге они ударяются о другие атомы. После столкновения атомы перенаправляются по другим маршрутам, и некоторая часть энергии, набранная падающим атомом в ходе его ускорения за счет гравитации, передается тому атому, с которым он столкнулся. Для большого скопления взаимодействующих атомов в этом случае будет гораздо разумнее описать это облако в терминах коллективного свойства атомов, известного как температура.

Температура – это мера средней кинетической энергии материала как результата случайного движения его составных частей. Для газа это обычно функция скорости атомов, движущихся беспорядочно по зигзагообразным отрезкам[12]. Отдельный атом притягивается внутрь и ускоряется, набирая энергию от гравитационной силы и увеличивая общую энергию газа. Когда он сталкивается с другими атомами, эта энергия перераспределяется, повышая температуру. Общая энергия не увеличивается, но после множества столкновений мы имеем уже не единичный быстро движущийся атом, проходящий сквозь более медленные, а увеличение на небольшую величину средней скорости каждого атома из этого скопления.

Увеличивающаяся скорость атомов в облаке газа стремится вытолкнуть их наружу, поскольку более быстро движущийся атом может пройти большее расстояние от центра, прежде чем гравитация развернет его и втянет назад. Перераспределение энергии от новых атомов, однако, означает, что это увеличение недостаточно для того, чтобы остановить общий коллапс, и по мере того как новые атомы втягиваются внутрь, масса протозвезды увеличивается, увеличивая гравитационную силу. Это, в свою очередь, притягивает все больше газа, принося еще больше энергии и большую массу и так далее. Облако продолжает наращивать как температуру, так и массу, становясь все плотнее и плотнее и все жарче и жарче. Если не вмешиваться в ее работу, сила гравитации сожмет все до бесконечно малой точки, формируя не звезду, а черную дыру. Хотя они и потрясающие объекты, сворачивающие пространство и время и бросающие, наверное, самый дерзкий вызов большинству наших фундаментальных теорий физики, окружение около черной дыры – не очень гостеприимное место, чтобы проводить там ежедневный утренний завтрак. К счастью, другие фундаментальные взаимодействия тоже играют свои роли, останавливая коллапс звезды и формируя то солнце, которое мы знаем и любим. И тут появляется следующая сила, вторая из наиболее нам знакомых – электромагнитное взаимодействие.

Электромагнитная сила

Мы постоянно встречаем электромагнитные взаимодействия в повседневной жизни, как в форме статического электричества, потрескивающего в стопке носков, что недавно из сушилки, или в виде магнитиков, которые держат школьные рисунки на холодильнике. В отличие от гравитации, которая всегда притягивает, электромагнитная сила может быть как притягивающей, так и отталкивающей: электрические заряды бывают положительной и отрицательной разновидности, и у магнитов есть как южный, так и северный полюса. Электромагнитное взаимодействие еще более всепроникающе, чем статические заряды и магниты, но в реальности оно ответственно за нашу способность видеть, можно сказать, вообще всё.

В ранние 1800-е годы электромагнетизм был горячо обсуждаемой темой в физике вместе со многими явлениями, включая электрические токи и магниты, которые изучались тогда впервые. Среди тех, кто изучал электромагнетизм, был британский физик Майкл Фарадей. Он открыл множество технических новшеств, какие играют ключевые роли в наших утренних действиях, включая его работу по сжиженным газам, их применяют в охлаждающих приборах. Также он разработал «клетку Фарадея»[13] (среди многих других приборов), она помогает не выпускать наружу электромагнитные поля внутри микроволновой печи. Несомненно, наиболее важное его открытие заключалось в том, что не только электрические токи могут воздействовать на расположенные неподалеку магниты, но и движущиеся магниты и изменяющиеся магнитные поля могут создавать ток. Это положило основу огромному спектру систем коммерческого производства в современной жизни. Он был одним из первых, кто понял поведение зарядов и магнитов с точки зрения электрических и магнитных полей, заполняющих пустое пространство и определяющих движение удаленных частиц.

Фарадей – знаковая фигура в физике, один из троих, на кого был похож Эйнштейн в своих работах (двое других – это Ньютон и Джеймс Клерк Максвелл[14]). Увы, Эйнштейн был выходцем из «низов» и, хотя был великим экспериментатором с глубокой проницательностью в области физики, ему не хватало математической подготовки, необходимой для перевода его догадок в такие формы, какие убедили бы физиков его времени всерьез принять концепцию электромагнитного «поля». Джеймсу Клерку Максвеллу, происходившему из зажиточного шотландского семейства, выпало создать твердую базу для электрических и магнитных полей. В 1860-егоды Максвелл показал, что все известные электрические и магнитные явления могут быть объяснены простым набором математических отношений, говоря современным языком, четырьмя «уравнениями Максвелла»[15], достаточно компактных, чтобы уместиться на футболке или кофейной чашке. Электрические и магнитные поля Фарадея – это реальные вещи, связанные между собой. Изменяющееся электрическое поле создает магнитное поле, и наоборот. Уравнения Максвелла охватывают все известные электрические и магнитные явления, а также предсказали новое, объединенное, электромагнитное поле. Если колеблющееся электрическое поле правильным образом скомбинировать с колеблющимся магнитным полем, они будут поддерживать друг друга, проходя через пространство. Изменяющееся электрическое поле будет вызывать изменения в магнитном, и наоборот. Эти электромагнитные волны путешествуют со скоростью света, и уже было известно, что свет ведет себя как волна.

11





Звезда на завершающей стадии своего формирования, вплоть до момента загорания термоядерных реакций в ядре, после которого она становится звездой главной последовательности. – Прим. ред.

12

Чтобы дать представление о масштабах, атом водорода при комнатной температуре движется примерно со скоростью 600 метров в секунду (около двух скоростей звука), в то время как у поверхности Солнца его скорость составляет 3000 метров в секунду. – Прим. авт.

13

Устройство, изобретенное М. Фарадеем в 1936 г., для экранирования аппаратуры от внешних электромагнитных полей. – Прим. ред.

14

М а к с в е л л, Джеймс Клерк (1831–1879) – шотландский физик, математик и механик. – Прим. ред.

15

Система уравнений, описывавших электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. – Прим. ред.