Добавить в цитаты Настройки чтения

Страница 2 из 7

В действительности же Эйнштейн играл ведущую роль в развитии квантовой физики. В 1905 году, в тот же год, когда он «запустил» теорию относительности, ученый также подхватил и расширил квантовую модель Планка для объяснения фотоэлектрического эффекта. Это существенно важно для работы цифровых камер, которые мы так широко используем сейчас для фотографирования. Десятилетием позже он разработал взаимодействие между светом и атомами таким образом, что это заложило основу для изобретения лазеров – основы современных телекоммуникаций. Даже после того, как Эйнштейн отошел от основного направления квантовой физики, он сделал ценный вклад – ввел идею спутанности атомов, именно она лежит в самом сердце множества предложений для следующего поколения квантовых технологий, включая невзламываемые шифры и компьютеры с беспрецедентными вычислительными мощностями.

Моя цель – продемонстрировать в этой книге квантовую составляющую повседневной реальности, глубоко проникнув в утреннюю рутину, описанную ранее. В следующих главах я покажу, как обычная каждодневная жизнь зависит от некоторых крайне странных явлений из когда-либо обнаруженных. По мере того как я буду объяснять, как квантовые эффекты связаны с нашей обычной жизнью, я также поделюсь рассказом о некоторых подсказках, которым физики следовали, чтобы открыть эти эффекты.

Мое намерение – не стащить квантовую физику с высот до ничем не выделяющегося обычного ежедневного завтрака. Скорее я надеюсь «приподнять» нашу обычную жизнь, найти удивительное и восхитительное в самых простых, привычных нам действиях. Квантовая физика – один из величайших интеллектуальных триумфов человеческой цивилизации, она расширяет сознание и будоражит воображение новыми идеями. Она вокруг нас каждый день, если мы только будем знать куда смотреть.

Глава 1

Восход: Фундаментальные взаимодействия

Солнце встает незадолго до того, как мой будильник начинает пищать, и я выбираюсь из постели, чтобы начать свой день…

Может показаться странным, что книга по квантовой физике обычных предметов начинается с разговора о солнце. В конце концов, Солнце – это огромная сфера горячей плазмы, чуть больше чем в миллион раз размера Земли, плавающая в космосе в ста пятидесяти миллионах километров отсюда.

Это не совсем обычный предмет в том смысле, как, скажем, будильник, который вы можете взять и швырнуть через всю комнату, когда он будит вас слишком рано.

С другой стороны, в некотором роде Солнце – наиболее важный повседневный предмет, даже если не принимать во внимание наблюдение, что день не может начаться, пока солнце не встанет. Без его света жизнь на Земле была бы абсолютно невозможной: растения, которые служат нам пищей и дают кислород, не будут расти, океаны замерзнут и так далее. Мы зависим от солнечного света и тепла всю жизнь. В этой книге Солнце будет полезным средством, чтобы познакомиться с ключевыми игроками квантовой физики: двенадцатью фундаментальными частицами, что составляют обычную материю, и четырьмя типами фундаментальных взаимодействий между ними.

Двенадцать фундаментальных частиц, которые не могут быть далее разделены на еще более мелкие части, распределяются на два «семейства» – в каждом по шесть частиц. Семья кварков[7] состоит из верхнего, нижнего, странного, очарованного, истинного и прелестного кварков, а семья лептонов – из частиц: электрона, мюона и тау-лептона, вместе с электронным нейтрино, мюонным нейтрино и тау-нейтрино. Четыре фундаментальных взаимодействия – это гравитационное, электромагнитное, сильное и слабое взаимодействия[8]. Вы часто можете найти эти частицы и взаимодействия пронумерованными на цветных таблицах, которые висят в физических классах и которые в целом получили, к сожалению, общее название «Стандартной модели физики»[9]. Стандартная модель охватывает все, что мы знаем о квантовой физике (а также о способности физиков изобретать прилипчивые названия), и считается одним из величайших интеллектуальных достижений человеческой цивилизации. Солнце оказывается прекрасным введением в Стандартную модель, потому что все четыре фундаментальных взаимодействия играют роль в том, чтобы Солнце светилось.

Итак, мы начинаем наш рассказ с Солнца, захватывающее путешествие по его внутренним механизмам, чтобы проиллюстрировать те важные физические процессы, что дают энергию всему. Мы пройдем через все фундаментальные взаимодействия по очереди, начиная с наиболее понятной и очевидной из этих сил – гравитации.

Гравитация

Если бы вам надо было составить «рейтинг силы» фундаментальных взаимодействий Стандартной модели в стиле спортивного радиокомментатора, три из четырех сил претендовали бы на первое место.





Если все-таки надо сделать выбор, я бы, вероятно, отдал это почетное право гравитации, поскольку в конечном счете она ответственна за существование звезд и, таким образом, за большинство атомов, составляющих наши тела и все вокруг нас, давая возможность вести глупые разговоры о «ранжировании» фундаментальных сил.

В нашей повседневной жизни гравитация наиболее знакома и неизбежна из всех фундаментальных взаимодействий. Именно с гравитацией вы боретесь, когда выбираетесь из кровати утром, и это она не дает мне возможность играть в баскетбол (ну, ладно, и еще то, что я не совсем в форме…). Мы проводим большую часть жизни, чувствуя притяжение гравитации, и как восхищает и леденит душу, когда в парке развлечений мы падаем, ее временное отсутствие.

Это близкое знакомство также делает гравитацию одной из наиболее изученных сил в истории науки. Люди думали, как и почему предметы падают на землю, по меньшей мере, с тех пор, как начали вестись записи людей, изучающих устройство мира вообще. Популярная легенда прослеживает происхождение физики от момента, когда упало яблоко на молодого Исаака Ньютона (в некоторых версиях, буквально), что дало толчок созданию теории гравитации. Однако, в противовес этой апокрифической истории, ученые и философы были уже достаточно хорошо знакомы с гравитацией и посвятили значительную часть своих размышлений принципам ее работы. Ко времени, когда жил Ньютон, эксперименты Галилео Галилея, Симона Стевина[10] и других уже подошли к некоторым количественным оценкам по исследуемой теме, было установлено что все предметы, независимо от их веса, падают на землю с одинаковым ускорением.

Будучи уже пожилым человеком, Ньютон сам пересказывал версию о своем «яблочном» открытии молодым коллегам, но никакого упоминания об этом событии нет в материалах более раннего времени, когда это якобы произошло (в то время, когда он работал над теорией гравитации). В тот период он провел длительное время на своей семейной ферме в Линкольншире, поскольку университеты были закрыты из-за вспышки чумы. Хотя в этой истории есть зерно истины, но она уводит в сторону от сути ньютоновского прозрения. Озарение Ньютона касалось не самого существования гравитации, а широты охвата этой силы. Он понял, что сила, которая притягивает яблоко к земле, та же самая, что держит Луну на орбите вращения вокруг Земли и Землю на орбите вокруг Солнца. В «Математических началах натуральной философии» Ньютон предложил универсальный закон для гравитации, дав математическую форму силам притяжения между двумя объектами во Вселенной, обладающими массами. Эта форма, в сочетании с законами движения, позволила физикам объяснить эллиптическую форму планетных орбит в Солнечной системе, постоянное ускорение предметов, падающих на землю и ряд других явлений. Это дало основу для физики как математической науки, основу, которая развивалась вплоть до сегодняшнего дня.

7

Up – верхний, down – нижний, strange – странный, charm – очарованный, top – истинный, bottom – прелестный (англ.). – Прим. пер.

8

При описаниях стандартных терминов, например, названий частиц или взаимодействий, приводятся устоявшиеся в российской научной литературе термины и определения, если это не искажает смысл, вложенный автором. Так, «электромагнетизм» переводится как электромагнитное взаимодействие, а «слабое ядерное взаимодействие» – просто как «слабое». – Прим. пер.

9

Для более полного и понятного обзора физических процессов в рамках Стандартной модели я рекомендую книгу: Robert Oester. The Theory of Almost Everything, 2006 год; а историческое развитие детально описано в работе: Frank Close. The Infinity Puzzle, 2013. -Прим. авт.

10

С т е в и н, Симон (1548–1620) – фламандский математик, механик, инженер. – Прим. ред.