Страница 3 из 6
В условиях равновесия:
С учетом этого, уравнение Лагранжа можно записать в виде системы линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:
Частными решениями уравнений системы будут уравнения:
В частных решениях (j = 0, 1,2,3…s):
Частным решениям соответсвуют резонансные частоты колебаний.
Для неизвестных получают систему линейных однородных уравнений подстановкой полученного частного решения в приведенную систему уравнений (основные уравнения система малых колебаний с s степенями свободы):
Полученная система уравнений имеет решение, отличное от нуля в случае равенства нулю определителя этой системы.
На этом основании записывается вековое уравнение (уравнение частот). Вековое уравнение является уравнением s-степени относительно :
Искомые частота колебаний р и амплитуды μ, возникающие при этой частоте (k = 1,2,3…n), находятся из:
– основных уравнений системымалых колебаний с s степенями свободы,
– векового уравнения.
Вековое уравнение является уравнением s степени относительно k2. И из этого уравнения находятся все частоты свободных колебаний k системы.
Так как определитель Δk2 = 0, одно из уравнений системы при μ = 1 является следствием других уравнений системы. Последовательно подставляя в уравнения системы все полученные значения k2 получается система уравнений:
Находятся значения коэффициентов μ:
– определитель матрицы, получаемый вычеркиванием из определителя
первых столбца и строки.
– минор элемента первой строки и
j
–го столбца со знаком (-1) основного
определителя
– коэффициенты распределения равные 1.
В результате частные решения первой системы уравнений:
– первое главное колебание с частотой
k
1
и начальной фазой β
1
.
– второе главное колебание с частотой
k
2
>
k
1
и начальной фазой β
2
.
– третье главное колебание с частотой
k
3
>
k
2
и начальной фазой β
3
.
…..
Коэффициенты определяют форму главных колебаний:
– форму первого главного колебания,
– форму второго главного колебания,
– форму третьего главного колебания,
и тд.
Общее решение первой системы уравнений можно получить суммированием частных решений:
2s неизвестные постоянных определяются по 2s и по начальным обобщенным скоростям и координатам:
На основании приведенного выше, алгоритм полного исследования свободных колебаний системы с s степенями свободы состоит из следующих действий:
а) нахождение частот свободных колебаний k1, k2 … ks из векового уравнения,
б) нахождение коэффициентов распределения
в) нахождения амплитуд и начальных фаз
Применение программы MathCAD
Яблонский отмечает [3,с.143] если число степеней свободы превышает 4, то доя полного решения задачи потребуется громадная вычислительная работы.
Однако, в настоящее время возможно применение математических пакетов таких как MathCAD.
Программа MathCAD позволяет для матриц выполнять нахождение определителя, решать матричные уравнения. Применение этой программы исключает выполнение громоздких ручных расчетов и позволяет по приведенному выше алгоритму получать точное решение без каких-либо приближенных методов.
MathCAD позволяет выполнять с матрицами символьные вычисления.
Для решения матричного уравнения типа:
необходимо записать матрицу