Добавить в цитаты Настройки чтения

Страница 9 из 17



Таким образом, Л.М. Гиндилис одним махом решает все проблемы, связанные с аномальной системностью человечества, над которыми безуспешно бьются все исследователи гиперболического роста. Беда здесь только в том, что такая зависимость коэффициента глобального естественного прироста от численности представляется совершенно невозможной по следующей причине:

В таком случае приходится постулировать единый и синхронно растущий по закону простой пропорции коэффициент прироста для населения всех стран и народов, когда-либо населявших Землю, т. е. растущий пропорционально не численности каждого такого выделенного народа или страны, а мира в целом, что представляется совершенно немыслимым.

Следовательно, вопрос здесь не в том, почему относительный глобальный естественный прирост пропорционален численности населения мира. Это неправильно поставленный вопрос. Само представление о том, что гиперболический рост населения Земли может быть объяснен с помощью причинного степенного закона квадратичного роста является ошибочным.

Рост популяции, выраженный степенным законом или каким-либо другим нелинейным законом, не может быть полностью описан лишь с помощью самого этого закона, т. к. такой закон сам по себе не может объяснить информационную связность растущей популяции, взаимозависимость роста всех ее частей.

Кроме того, рост популяции, происходящий по степенному закону, имеет и свои, специфические, присущие только ему особенности, не позволяющие принять этот закон в качестве причинного закона для описания роста какой-либо реально существовавшей в природе популяции. Перечислим все эти аномальные особенности параболического и гиперболического роста:

1. Оба они имеют особую, выделенную на оси времени точку: момент начала или завершения роста, численность популяции в которой равна нулю для параболического и бесконечности для гиперболического роста. Поскольку такое в реальности невозможно, да и само наличие таких особых точек на шкале роста должно иметь какое-то объяснение, следует признать, что непрерывная модель степенного роста как процесса с простой преддетерминацией изначально содержит в себе внутренние противоречия.

2. Хотя численность популяции при степенном, так же как и при экспоненциальном росте изменяется по закону геометрической прогрессии, но рост этот происходит на последовательности интервалов времени расширяющихся (параболический рост) или сжимающихся (гиперболический рост) по закону прогрессии от/к особой точки/е этого роста.

Это увеличение (уменьшение) времени удвоения численности популяции выполняется при отсчете времени (прямом или обратном) только от этой точки и ни от какой другой, что еще раз подчеркивает ее выделенность. Такой рост, в отличие от экспоненциального роста, является существенно неоднородным во времени процессом. Если взять два равных отрезка времени, различающихся своим положением на шкале роста, то рост численности, в том числе и размножение каждой единичной особи популяции, будет происходить на них совершенно по разному.

Рассмотрим, например, простой гиперболический рост на последовательности отрезков времени, сокращающихся по закону прогрессии со знаменателем 1/2 (так росло население Земли). На каждом таком отрезке время удвоения численности уменьшается вдвое по сравнению с предыдущим, что говорит о том, что особи популяции будут здесь более плодовитыми и/или потери от смертности меньшими[56].

Что совершенно немыслимо для любой популяции, когда-либо существовавшей в природе, время удвоения численности которой в благоприятных и неизменных условиях есть всегда величина постоянная. Поскольку это время по каким-то причинам при каждом таком удвоении численности уменьшается ровно в два раза, то это должно иметь какое-то объяснение; иначе говоря, закон степенного роста, в отличие от закона экспоненциального роста, законом причинно-самодостаточным уже не является. Что это означает?

Это означает то, что в отличие от естественного экспоненциального роста, причина которого заключена в положительной обратной связи между численностью и ее естественным приростом (природу которой не нужно никак дополнительно обосновывать), причиной аномального степенного роста для автономно растущей, никем и никак не управляемой сосредоточенной популяции являются связи (взаимодействия) между членами этой популяции, влияние которых на рост численности требует специального исследования.

3. Закон степенного роста – закон нелинейный и потому прирост численности на особь (элементарную репродуктивную ячейку популяции), за некоторый промежуток времени Δt, равен ΔN/N = αΔtNm-1 и зависит от полной численности популяции, что предполагает при отсутствии четко выраженных границ среды обитания популяции ее глобальную системность, информационную связность во все времена.

Что представляется чрезвычайно жестким, по сути, невыполнимым требованием для любой рассредоточенной популяции, плотность которой не растет или растет незначительно при увеличении ее полной численности. И что уже совершенно непонятно, так это то, что относительный прирост ΔN/N за время Δt неограниченно возрастает, когда численность популяции приближается к особой точке своего роста (2), рис 1.

С учетом всего сказанного следует признать, что степенной рост численности изолированной популяции не может считаться свободным и не может быть описан причинным степенным законом, т. е. законом, описывающим нелинейную ПОС между численностью и естественным приростом.



Этот рост никак не может быть вызван имманентно присущей способностью к размножению любой элементарной ячейки популяции, т. к. такой экспоненциальный рост происходит по закону геометрической прогрессии на интервалах равной длительности. Естественные, свободные, не индуцированные какой-либо управляющей системой связи между членами популяции, также никак не могут вызывать такой рост.

Но степенной рост популяций никогда и не встречается в природе. Все когда-либо существовавшие на Земле виды в условиях избытка ресурсов увеличивали свою численность по экспоненциальному, а не по степенному закону.

Это так для всех видов: от амебы до слона. Для всех – кроме человека. Исследования последнего времени показали, что численность человечества росла по гораздо более быстрому, в завершающей своей стадии, гиперболическому закону. И результаты налицо: нас в десять тысяч раз больше, чем наших ближайших родственников – человекообразных обезьян. Причина такого аномального роста не может быть объяснена, как мы только что показали, причинным законом квадратичного роста.

С.П. Капица, однако считает, что степенной причинный закон может исчерпывающе описывать рост популяции, т. е. делать это ничуть не хуже, чем закон экспоненциального роста:

«Когда рассматривается сложный, многофакторный процесс развития системы, обладающий, однако, статистической стационарностью, следует ожидать, что рост происходит динамически самоподобно. В этом случае остается неизменным пропорция между относительным изменением численности и относительным изменением времени.

Поэтому, в основе модели лежит предположение об автомодельности развития, что выражается в масштабной инвариантности, скейлинге этого процесса. Смысл этой основной гипотезы состоит в том, что утверждается постоянство относительной скорости роста системы.

Это своего рода принцип инерции развития системы, и в этом случае можно показать, что рост должен описываться степенным законом. Таким образом, исключаются экспоненциальный и логистический рост, имеющие внутренний масштаб времени – время удвоения»[57]. (Выделено мной. – А.М.)

56

Плодовитость может расти, смертность падать, но почему закон, по которому это происходит, именно такой, какой он есть, и почему он остается неизменным в течение длительного времени?

57

«Модель роста населения Земли и предвидимое будущее цивилизации»

http://spkurdyumov.narod.ru/Kapitsa/Kapit.htm