Добавить в цитаты Настройки чтения

Страница 12 из 17

Линейный закон, как мы уже отмечали ранее, дает постоянный, не зависящий от растущей численности прирост, что выглядит как полная несообразность. Гиперболический рост населения Земли, происходящий по причине ПОС второго порядка между численностью и мировым естественным приростом также невозможен, т. к. предполагает для рассредоточенной популяции Homo sapiens системность, которой она никогда не обладала и еще по множеству других причин, о которых мы будем говорить далее.

Экология популяций – это не физика, у нее свои законы и главный из них – закон экспоненциального роста, который, по мнению физика (!), лауреата нобелевской премии В.Л. Гинсбурга, является первым и важнейшим законом (или даже принципом) экологии популяций.

И который утверждает, что естественное состояние популяции – это рост или уменьшение по экспоненте. Это столь же важный закон для экологии популяций, как первый закон Ньютона для физики. Ни одна популяция, принадлежащая какому-либо виду из всех когда-либо существовавших в природе, не росла в соответствии со степенным причинным законом, связывающим скорость роста с численностью.

Причина здесь в особенностях нелинейного степенного роста, которые не соответствуют никакому природному репродуктивному процессу. Следовательно, причинная модель степенного роста неприменима для описания динамики изменения численности популяций.

И если численность какой-то популяции, как, например, численность человечества все-таки растет по степенному закону, то такое возможно лишь потому, что закон, связывающий скорость роста с численностью, причинным законом в этом случае не является.

Главный закон роста численности изолированной популяции

В основе любых моделей лежат некоторые предположения. Ценность модели определяется тем, насколько ее характеристики соответствуют свойствам моделируемого объекта. Одним из самых фундаментальных предположений, лежащим в основе всех моделей роста, является предположение о пропорциональности скорости роста численности популяции – самой этой численности, будь то популяция зайцев, будь то популяция клеток.

В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению. Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей – это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления.

Для сложно организованных растений и животных размножение происходит по более сложному закону, но в наиболее простых и адекватных моделях предполагается, что скорость размножения популяции пропорциональна численности этой популяции. Закон экспоненциального роста справедлив на определенной стадии для следующих живых систем: клеток в ткани, водорослей, бактерий в культуре, животных в популяциях.

Математическое выражение, описывающее увеличение скорости изменения величины с ростом самой этой величины, называют автокаталитическим членом (авто – само, катализ – изменение скорости реакции). Во многих популярных руководствах по экологии говорится, что экспоненциальный рост популяций возможен только в особо оптимальных условиях при отсутствии каких-либо ограничивающих факторов.

Это не совсем верно, поскольку единственное необходимое и достаточное условие такого роста – это постоянство коэффициента естественного прироста, определяющего для размножающихся организмов скорость их размножения.

Так, например, проводя серию наблюдений за ростом популяции каких-либо одноклеточных организмов в разных температурных условиях, нетрудно заметить, что с уменьшением температуры скорость деления клеток падает, но экспоненциальный характер роста сохраняется [13].

Иногда желая принизить значение экспоненциального роста популяции, авторы акцентируют внимание на его непродолжительности, на то, что он почти никогда не встречается в природе и, следовательно, может рассматриваться, по их мнению, лишь как демонстрация потенциальной возможности популяции к росту.

При этом они забывают о том, что никакая популяция так бы никогда и не появилась в природе, если бы не существовал этот важный, пусть и кратковременный, этап ее развития. Но бывают случаи, когда этот этап все длится и длится и никак не может закончиться:





«В 1859 году один фермер завез в южную часть Австралийского континента дюжину кроликов из Европы. В Австралии для них не оказалось видов-контролеров (хищников или паразитов) и численность кроликов стала расти в соответствии с экспоненциальной кривой. В итоге за 6 лет их количество достигло 22 миллионов.

К 1930 году они расселились по всему континенту, а численность их достигла 750 млн! Кролики конкурировали с овцами за корм (в итоге поголовье овец снизилось в два раза). Они лишали корма кенгуру. В начале 1950 годов удалось уничтожить 90 % кроликов, заразив их патогенным вирусом миксомы (родственником вируса оспы). Однако на этом «кроличья эпопея» в Австралии не завершилась: достаточно быстро произошел процесс формирования экотипа устойчивого к болезни, и поголовье снова начало расти» [14].

В природе, прошедшей длительный путь эволюции, мы наблюдаем самые разнообразные способы ограничения экспоненциальной экспансии размножающихся организмов. Важное значение имеют внешние воздействия на популяцию: неблагоприятные условия, конкуренты, хищники, паразиты, возбудители болезней и т. п. Но для изолированных популяций интерес представляют только те изменения, которые возникают внутри самих популяций, происходящие в ответ на рост их численности.

Распространенное представление о том, что рост популяций в благоприятных условиях ограничивается только объемом пищевых ресурсов и конкуренцией – представляется ошибочным.

Существует множество примеров, свидетельствующих о том, что все популяции: животные, растительные, бактериальные – обладают эффективными средствами, ограничивающими рост своей численности и активизирующимися задолго до того как заканчиваются пищевые ресурсы, или вступают в силу ограничения по причине конкуренции. Есть лишь редкие исключения из этого правила.

Такая саморегуляция, когда популяция ведет себя как единый живой организм, не является приобретением высших форм жизни. Она характерна для всех видов, даже бактериальных, вырабатывающих для этого целое семейство активных веществ.

Высшие организмы регулируют свою численность множеством способов, например, через паразитов в составе биоценоза, пропуском сезонов размножения или даже рассасыванием беременности [15].

Кажутся ли удивительными в таком случае парадоксальный гиперболический рост численности населения Земли и следующий за ним демографический переход, ограничивающий эту численность на некотором предельном уровне.

Рост, который никогда не зависел ни от каких ресурсов и переход, который происходит в условиях всеобщего изобилия, когда нет (в первом приближении) никаких ограничений ни в пищевых, ни в пространственных, ни в энергетических, ни в каких-либо других ресурсах.

Разве удивительно, что растущее человечество как система с помощью разнообразных появляющихся и исчезающих связей управляет своим ростом и ведет себя подобно всем другим видам и подобно Гее Лавлока, как единый живой организм?

То, что плотность популяции влияет на рост ее численности можно проверить в опытах с любыми видами организмов. Так, например, при содержании белых мышей в вольерах, когда люди следят за чистотой клеток и обеспечивают всех кормом, мыши, достигнув определенной численности, перестают размножаться.

Если перевести их в более просторную клетку, тем самым снизив число особей на квадратный метр, они продолжат размножение вновь до определенного предела. При этом меняются характер поведения мышей и отношения их между собой. Зверьки становятся беспокойными и агрессивными, и это отрицательно влияет на процесс размножения [11].