Добавить в цитаты Настройки чтения

Страница 3 из 10

Особенно поражало, что он пожертвовал абсолютным временем. Исаак Ньютон считал, что время – самое объективное, универсальное и трансцендентное из всех природных явлений: «Абсолютное, истинное математическое время… безо всякого отношения к чему-либо внешнему протекает равномерно», – пишет он на первых страницах своих «Начал»[1]. Однако Эйнштейн понимал, что с нашей точки зрения время – лишь следствие из опыта взаимодействия с ритмичными явлениями: сердцебиением, вращением планет вокруг своей оси и по орбитам, тиканья часов. «Все наши суждения, в которых время играет какую-либо роль, всегда являются суждениями об одновременных событиях. Если я, например, говорю: “Этот поезд прибывает сюда в 7 часов”, – то это означает примерно следующее: “Указание маленькой стрелки моих часов на 7 часов и прибытие поезда суть одновременные события”» («К электродинамике движущихся тел»[2]), – писал Эйнштейн в своей июньской статье. Если события происходят на каком-то расстоянии друг от друга, судить об одновременности можно, только посылая в обе стороны световые сигналы. Опираясь на эти основные принципы, Эйнштейн доказал, что мнение наблюдателя об «одновременности» двух событий зависят от его движения. Иначе говоря, никакого вселенского «сейчас» не существует. Когда разные наблюдатели делят хронологическую ось на прошлое, настоящее и будущее по-разному, из этого следует, что все моменты сосуществуют с равной вероятностью и одинаково реальны.

Выводы Эйнштейна были продуктом чистой мысли, возникшим из самых строгих предположений о природе вещей. Прошло больше ста лет с тех пор, как он их сделал, и теперь мы знаем, что их подтвердил целый ряд экспериментов. Однако когда Эйнштейн подал статью об относительности, изданную в 1905 году, как диссертацию, ее отклонили (и тогда он подал взамен апрельскую статью о размерах атомов, у которой, по его мнению, было меньше шансов отпугнуть экзаменаторов, и ее приняли, но лишь после того, как Эйнштейн добавил одно предложение, чтобы соответствовать требованиям об объеме текста). Когда в 1921 году Эйнштейн получил Нобелевскую премию по физике, ее присудили за работу о фотоэлектрическом эффекте. Шведская Академия запретила ему даже упоминать об относительности в нобелевской речи. Но вышло так, что Эйнштейн не смог попасть на церемонию в Стокгольм. Нобелевскую речь он прочитал в Гетеборге, а в первом ряду сидел король Густав V. Его величество пожелал узнать о теории относительности, и Эйнштейн повиновался.

В 1906 году, через год после a

В 1924 году Гёдель поступил в Венский университет. Он собирался изучать физику, но вскоре его пленила своей красотой математика, особенно мысль о том, что абстракции вроде чисел и окружностей существуют вечно и неизменно, независимо от человеческого сознания. Это учение называется платонизм, поскольку происходит от теории идей Платона, и всегда было популярно среди математиков. Однако в венских философских кругах двадцатых годов платонизм считался безнадежно устаревшим. В богатейшей культуре венских кафе процветали всевозможные интеллектуальные направления, но наибольшую известность получил «Венский кружок» – группа мыслителей, объединенных представлением о том, что философию следует очистить от метафизики, переосмыслить и превратить в точную науку. Под влиянием Людвига Витгенштейна, невольно ставшего их гуру, члены Венского кружка стали считать математику игрой с символами, вроде шахмат, только сложнее. Они полагали, что утверждение наподобие «2+2=4» истинно не потому, что оно точно описывает какой-то абстрактный мир чисел, а потому, что его можно вывести в рамках логической системы в соответствии с определенными правилами.

Гёделя привел в Венский кружок его университетский преподаватель, однако о своих платонических воззрениях молодой человек предпочитал молчать. Он любил строгость во всем и не терпел споров, поэтому не хотел отстаивать свои воззрения, пока не разработает безупречного доказательства своей правоты. Но как доказать, что математику нельзя свести к логическим ухищрениям? Гёдель избрал тактику сверхъестественно хитрую и одновременно, по словам философа Ребекки Голдштейн, «умопомрачительно красивую»: он обратил логику против себя самой. Он начал с логической системы математики – предполагалось, что эта система лишена противоречий – и построил своеобразную схему, благодаря которой смысл формул стал демагогическим. Формула, говорившая что-то о числах, согласно этой схеме могла толковаться как высказывание о других формулах и об их логическом соотношении друг с другом. Более того, как показал Гёдель, численную формулу можно заставить даже сказать что-то о себе самой. Тщательно выстроив этот аппарат математической самоссылаемости, Гёдель придумал поразительный трюк: составил формулу, которая не просто прямо говорила что-то о числах, но и добавляла: «Я недоказуема». Поначалу показалось, будто это парадокс, ведь он напоминает древнюю притчу о критянине, который говорил, что все критяне лжецы. Однако ссылающаяся сама на себя формула Гёделя говорит не о своей истинности, а о своей доказуемости. Может ли она лгать, утверждая «Я недоказуема»? Нет: если бы она лгала, это означало бы, что она доказуема, а доказуемость сделала бы ее истинной. Потому, утверждая, что ее нельзя доказать, она говорит истину. Но истинность этого утверждения видна только извне логической системы. Внутри системы его нельзя ни доказать, ни опровергнуть. Таким образом, система неполна, поскольку есть по крайней мере одно истинное утверждение о числах, то самое, которое говорит «я недоказуемо», которое нельзя доказать изнутри системы. Такой вывод – что ни одна логическая система не способна вместить все математические истины – известна как первая теорема о неполноте. Гёдель также доказал, что нет такой логической системы, описывающей математику, которая была бы свободна от непоследовательности, причем это можно было бы доказать ее же средствами – этот результат известен как вторая теорема о неполноте.

Витгенштейн как-то заявил, что «в логике не может быть неожиданностей». Однако теоремы Гёделя о неполноте появились совершенно неожиданно. Более того, когда начинающий логик в 1930 году представил их на конференции в немецком городе Кенигсберге, в них почти никто ничего не понял. Что это значит – говорить, что математическое выражение истинно, если нет никакой возможности его доказать? Нелепица какая-то. В недоумении был даже Бертран Рассел, в прошлом великий логик; похоже, у него сложилось ошибочное впечатление, что Гёдель нашел какое-то противоречие в самой системе математики. «Нам что, теперь считать, будто 2+2 – не 4, а 4,001?» – десятилетия спустя спрашивал Рассел в полной растерянности и добавлял: «Как хорошо, что я оставил занятия математической логикой». Но когда до специалистов стало доходить, что следует из теорем Гёделя, многие бросались словами вроде «крах», «катастрофа» и «кошмар». Оказывается, представления, что математики, вооружившись логикой, способны разрешить в принципе любую головоломку, что в математике не может быть ignorabimus, о чем так часто говорили, – все это было лишь вопросом веры. Теоремы Гёделя разрушили идеальную картину полноты знания.





Однако самому Гёделю все виделось иначе. Он считал, что показал, что математика обладает плотью и реальностью, выходящими за пределы любой логической системы. Гёдель был твердо убежден, что логика – не единственный путь к познанию этой реальности, у нас еще есть своего рода экстрасенсорное ее восприятие, «математическая интуиция», по его выражению. Именно эта способность позволяет нам, например, увидеть, что формула, говорящая «я недоказуема», должна быть истинной, хотя она и не поддается доказательству в пределах системы, в которой обитает. Некоторые мыслители, например, физик Роджер Пенроуз, развили эту тему и пришли к выводу, что из теорем Гёделя о неполноте можно сделать глубочайшие выводы о природе человеческого разума. Наши ментальные способности изначально превосходят возможности любого компьютера, поскольку компьютер – это не более чем логическая система, обеспеченная электронным оборудованием, а наш разум может формулировать истины, недоступные логической системе.

1

Здесь и далее пер. А. Крылова.

2

Пер. А. Базя, Л. Пузикова и А. Сазыкина.