Страница 6 из 32
Хранитель водопада с гордостью пояснил, что рисунки тут особые. На первой ступеньке уложено 100 разноцветных камешков, на второй - 101 камешек, на третьей - 102... В общем, на каждой следующей ступеньке было на один камешек больше, чем на предыдущей. А на самую верхнюю ступеньку ушло ровно 500 камешков.
Единичке захотелось хорошенько рассмотреть все рисунки, и она потянула меня на лестницу. Но хранитель сказал, что гораздо приятнее рассматривать рисунки, спускаясь вниз, а наверх лучше подняться по канатной дороге.
Единичка немедленно уселась в вагончик, но хранитель разъяснил, что вагончик имеет право везти только тех, кто сумеет сосчитать, сколько камешков уложено на всех ступеньках лестницы.
- К чему считать? - удивился я. - Достаточно воспользоваться простым правилом, изобретенным великим математиком Гауссом. Если известно, что на первой ступеньке 100 камешков, а на последней - 500, надо сложить 100 и 500 (получится 600), разделить эту сумму пополам (получится 300) и, наконец, 300 умножить на число всех ступенек, то есть на 400 (ведь 500 минус 100 - это 400). 300, умноженное на 400, равно ста двадцати тысячам. Вот сколько камешков ушло на все рисунки.
Я уселся рядом с Единичкой в вагончик, но... хранитель водопада, вместо того чтобы везти нас наверх, преспокойно расположился на нижней ступеньке лестницы и углубился в чтение африканской газеты. Очевидно, он просто не был знаком с правилом Гаусса. Хорошо, что Единичка (ох эта Единичка!) сумела-таки уговорить его. Что она ему нашептала, понятия не имею, но вскоре мы уже были наверху.
Вид оттуда изумительный, но там так холодно, что я чуть не замерз. А термометр на вагончике как ни в чем не бывало показывал 28 градусов выше нуля! Ясно, что градусник был испорчен, хотя хранитель начисто это отрицал. Разумеется, из чувства противоречия.
Мы быстро спустились вниз, бегло осмотрели рисунки и, чтобы согреться, бодрым шагом отправились дальше.
Вскоре мы встретили очень интересного человека. Он оказался энтомологом охотником на диких зверей. Сейчас он уже закончил свою экспедицию и готовился отправить добычу в зоопарк.
Хищники были спрятаны в трех заколоченных ящиках с маленькими дырочками для воздуха. В одном ящике были муравьеды, в другом утконосы, а в самом большом - жирафы.
Я, понятно, спросил у охотника, велик ли улов. Но тот, узнав, что я известный математик, очень обрадовался и сказал, что предоставляет мне возможность вычислить самому, сколько животных находится в каждом ящике. При этом он пояснил, что утконосов у него во столько раз больше, чем муравьедов, во сколько муравьедов больше, чем жирафов. А жирафов в семь раз меньше, чем всех животных, вместе взятых. Я возразил: такую задачу решить абсолютно невозможно.
- Совершенно с вами согласен, - сказал охотник, - я пошутил.
Но в это время с самого высокого ящика свалилась крышка, и оттуда выглянуло десять прелестных жирафьих морд.
- Ну, теперь-то уж вы наверняка решите мою задачу! - воскликнул охотник. И снова, по-моему, пошутил.
- Пусть число жирафов 10, - недоумевал я, - но ведь остается неизвестным, во сколько раз жирафов меньше, чем муравьедов!
- Во столько же раз, - ответил энтомолог, - во сколько муравьедов меньше, чем утконосов.
- К тому же, - добавила Единичка, - не забудьте, что всех животных в семь раз больше, чем жирафов!
- Ну и что из этого? - спросил я.
Но Единичка (до чего проворна!) мигом решила задачу. Я так за нее обрадовался, что тут же позабыл, сколько утконосов и муравьедов поймал наш охотник.
Отдохнув, мы двинулись дальше и к вечеру подошли к неповторимому по красоте озеру Чад.
Очертанием оно напоминает прямоугольник со сторонами примерно в 120 и 240 километров. (Я прикинул это по карте.) Огромный прямоугольник! Параметр его, выходит, равен 700 километрам.
Да такое озеро и за месяц не обойдешь!
Быстро темнело. И вдруг откуда-то с востока небо прорезал тонкий луч света. Он был так тонок, что я его сразу и не разглядел. Единичка уверяла, что это пролетел метеорит. Но я-то думаю, что то был искусственный луч, пущенный из какой-нибудь местной лаборатории. Уверен, что это луч квазара. Единичка над этим смеется. Чудачка! Что она знает о квазарных лучах? Ну вот, стало так темно, что я вынужден прервать свои записи. До свидания! Вернее, до следующего письма.
ДВЕНАДЦАТОЕ ЗАСЕДАНИЕ КРМ
происходило у Олега, в комнате, сплошь уставленной книгами. Нулик сказал, что никогда не видел столько книг зараз, и долго читал вслух по корешкам названия. Наконец его угомонили, и хозяин дома объявил заседание открытым.
- Итак, - сказал он, - Магистр уже обогнул южный выступ Африки. Поспешим и мы за его "Быстроходной улиткой". Кто просит слова?
Нулик уже давно сидел с поднятой рукой, а теперь поднял и другую - очень ему хотелось высказаться первым. На то была причина: в математических задачах президент не разобрался, зато считал себя великим географом. А как раз с географии начинался рассказ Магистра.
- Когда Магистр обогнул самый южный выступ Африки - мыс Доброй Надежды, начал Нулик, - он очутился в Индийском океане, а затем в каком-то неизвестном проливе. И тут - ох и насмешил же! - чуть не наткнулся на Европу! Ну какая может быть Европа в Индийском океане? Это первое, а второе...
- Постой-постой, - перебила его Таня, - у тебя уже действительно есть и первая и вторая грубые ошибки. Прежде всего мыс Доброй Надежды не самая южная точка Африки. Есть и поюжнее - мыс Игольный. А потом, ничего удивительного, что в Мозамбикском (а не в каком-то!) проливе "Улитка" наткнулась на Европу. В этом проливе в самом деле находится Европа, только не континент, а остров.
Президент виновато засопел, но смущение его, как всегда, быстро испарилось.
- Что делать, небольшая осечка, - небрежно сказал он. - Зато уж дальше я несомненно прав: "Улитка", конечно, могла войти в устье реки Замбези, но уж доплыть до самого ее истока, до Конго, такое большое судно не сможет. Ведь Замбези вблизи устья судоходна не более, чем на протяжении 450 километров! А дальше - стоп! Начинаются пороги. Это я наверное знаю: вчера прочитал в энциклопедии. Теперь двинулись дальше. Интересно, что за пампасы отыскал Магистр в Африке? Ведь пампасы - травянистые степи, и встретить их можно только в Южной Америке. Значит, Ливингстон не мог разыскивать Стэнли в этих самых пампасах. Это уж точно.