Добавить в цитаты Настройки чтения

Страница 2 из 8



ВНС – вегетативная нервная система

ВМК – ванилинминдальная кислота

ДМП – дополнительное «мертвое» пространство

ЖЕЛ – жизненная емкость легких

КФ – креатинфосфат

КФК – креатинфосфокиназа

КЩР – кислотно-щелочное равновесие

КЩС – кислотно-щелочное состояние

МОД – минутный объем дыхания

МПК – максимальное потребление кислорода

НМА – нервно-мышечный аппарат

О2 – кислород

ОРУ – общеразвивающие упражнения

ОФП – общая физическая подготовка

ПАНО – порог анаэробного обмена

СО2 – углекислый газ

ССС – сердечно-сосудистая система

ЧСС – частота сердечных сокращений

ЭКГ – электрокардиограмма

Hb – гемоглобин

La – лактат

РСО2– парциальное давление углекислого газа

РО2 – парциальное давление кислорода

PWC170 – велоэргометрическая проба



R – Rmax – наибольшее значение величины интервала R – R

R – Rmin – наименьшее значение величины интервала R – R

R – Rср. – математическое ожидание (средняя величина интервала R – R)

1. Гипоксический фактор в повышении функционального состояния организма спортсменов

Для нормальной деятельности организма человека необходимо постоянное поступление кислорода (O2), воспроизводство энергии, а следовательно, постоянная работа газотранспортных систем (дыхания, кровообращения) и системы биологического окисления. В случае нарушения деятельности этих систем возникает эндогенная гипоксия (Noreen R.,Henig David J., Pirson, 2000).

Гипоксия может быть обусловлена различными нарушениями.

Дыхательная, или респираторная, гипоксия возникает в результате нарушения газообменной функции легких при нормальном парциальном давлении O2 (РO2) в атмосферном воздухе, вследствие затруднения проникновения O2 в кровь через дыхательные пути либо при понижении PO2 в воздухе. Практически любые тяжелые нарушения внешнего дыхания могут вызвать респираторную гипоксию. При дыхательной гипоксии развивается гипоксемия, сопровождающаяся метаболическим ацидозом. Гиперкапния способствует стимуляции внешнего дыхания и кровообращения. Однако при высокой степени увеличения двуокиси углерода усугубляется респираторная гипоксия (Piiper I, 1967; Чоговадзе А.В., 1984).

Циркуляторная гипоксия возникает в результате снижения объемной скорости кровотока, что приводит либо к уменьшению притока артериальной крови к тканям, либо к затруднению оттока венозной крови от тканей. Обычными причинами циркуляторной гипоксии являются сердечная недостаточность, сосудистая недостаточность или гиповолемия. Последняя может приводить к сердечной недостаточности вследствие уменьшения притока крови к сердцу и к сосудистой недостаточности вследствие несоответствия сосудистого тонуса объему циркулирующей крови. Снижение объемной скорости кровотока при циркуляторной гипоксии сопровождается уменьшением O2 в венозной крови, а также увеличенной артериовенозной разницей по O2. Обычно гипоксия данного типа приводит к появлению метаболического ацидоза (Рябов Г.А., 1988).

Гемическая гипоксия связана с большим снижением эритроцитов либо инактивацией гемоглобина.

Гипоксия может возникать и при нормальном составе окружающей газовой среды, и при нормальной деятельности системы, транспортирующих O2 в клетки. Она развивается в том случае, если нарушается утилизация O2 в процессе биологического окисления. Кислородное голодание данного типа называется тканевой гипоксией. Недостаточность биологического окисления может быть следствием снижения интенсивности окислительных процессов или же уменьшения эффективности биологического окисления. Ослабление окислительных процессов возникает в результате снижения активности дыхательных ферментов, ослабления их образования, изменений свойств мембран митохондрий и др. (Koistinenp О., Rusko Н., Irjala К., 2000).

Гипоксемия – это состояние, при котором РO2 в артериальной крови меньше нормального (< 60 мм рт. ст.). Гипоксемия возникает вследствие непопадания кислорода в кровь. Гипоксия тканей возникает вследствие того, что клеткам не хватает 02 для выполнения функции метаболизма. Хотя гипоксемия (слишком маленькое поступление кислорода в кровь) обычно является причиной гипоксии тканей, существуют другие состояния, которые прерывают поступление кислорода в кровь и приводят к гипоксии.

Основными механизмами гипоксемии являются: низкий уровень O2, гиповентиляция, нарушение соотношения перфузии-вентиляции, сброс крови «справа налево».

Первый механизм гипоксемии возникает при наличии неблагоприятной окружающей среды. Низкое давление вдыхаемого кислорода возникает как результат уменьшения фракции вдыхаемого кислорода (FiO2) по сравнению с нормой (FiO2 < 0,21) при нормальном барометрическом давлении.

Гиповентиляция является вторым фактором, который приводит к гипоксемии.

Среди всех механизмов гипоксемии нарушение соотношения вентиляции и перфузии (В/П) является наиболее распространенным, хотя и самым сложным. В нормальных легких В/П равняется 1. Гипоксемия имеет место при уменьшении В/П.

Четвертым механизмом гипоксемии является сброс крови «справа налево». У здоровых пациентов физиологический сброс 5 % от сердечного выброса возникает вследствие циркуляции крови через бронхи, где она скапливается непосредственно в легочных венах.

Внелегочный сброс возникает в сердечно-сосудистой системе (ССС). Внутрисердечный сброс возникает при наличии дефекта межпредсердной или межжелудочковой перегородки или незаращении артериального протока. Данные дефекты обычно приводят к сбросу крови «слева направо», так как левое сердце более мощное. Если правое сердце создает давление больше, чем в левом сердце, то кровь начинает перетекать в обратную сторону и возникает сброс «справа налево».

• Наряду с перечисленными видами гипоксии, была выделена и гипоксия нагрузки. При усилении функции мышц и недостатке кислорода сочетание гипоксии нагрузки с гипоксической гипоксией может быть эффективным и способствует повышению работоспособности спортсмена (Волков Н.И., 1990; Колчинская А.З., 1993; Платонов В.Н., Булатова М.М., 1993).

В целях изучения гипоксии нагрузки проведены исследования в лабораторных условиях динамики снижения уровня оксигенации крови в процессе работы на велоэргометре ступенеобразно повышающейся мощности от 800-1000-1200-1500-1700 кгм/мин и выше у четырех групп спортсменов (юношей, юниоров, зрелого возраста и пожилых спортсменов).

По мере повышения мощности нагрузок в диапазоне от 800 до 2000 кгм/мин происходит прогрессирующее падение оксигенации (рис. 1). Возрастные различия выявляются лишь при работе средней и большой мощности, причем у спортсменов зрелого возраста и юниоров падение выражено больше (в среднем на 18 %). Имеется большой разброс индивидуальных данных.

Как видно из рисунка, в работе субмаксимальной мощности развивается гипоксия при снижении оксигенации на 18–23 %. В условиях среднегорья в работе мощностью 1600 кгм/мин снижение оксигенации достигает 32–33 % (табл. 3).

При индивидуальном анализе 110 динамических электрокардиограмм (ЭКГ) была выявлена связь обнаруженных ЭКГ-изменений с динамикой поглощения кислорода, особенно с величиной кислородного пульса. На рис. 2 (А, Б) приводится серия ЭКГ спортсменов разного возраста, заснятых в процессе испытания, свидетельствующая о влиянии гипоксии нагрузки на работу сердца.

Рис. 1. Снижение насыщения артериальной крови O2 (от 96 %) в процессе ступенеобразно повышающихся нагрузок