Страница 9 из 19
Вопрос состоял в следующем: каким именно образом ДНК находит путь к геному? Марио Капекки, профессор университета Юты, пытался ответить на этот вопрос в начале 1980-х, сделав одно необъяснимое наблюдение: когда в один геном “подселяли” сразу много копий какого-нибудь гена, эти копии интегрировались в геном вовсе не беспорядочно, как этого можно было бы ожидать, а прямо наоборот. Капекки обнаружил, что копии гена, вместо того чтобы распределяться хаотическим образом по разным хромосомам генома, всегда собирались вместе в одной или немногих областях, при этом многие копии накладывались друг на друга, как будто их так собрали таким образом умышленно. Впоследствии ученый установил, что именно так оно и было[26].
Капекки наблюдал результаты процесса, называемого гомологичной рекомбинацией, – в тот момент это был уже хорошо известный феномен, однако ученый не ожидал наткнуться на него в этом эксперименте. Наиболее известный пример гомологичной рекомбинации – происходящая во время формирования яйцеклеток и сперматозоидов редукция каждого двойного набора хромосом (половину которого мы получили от матери, а половину от отца) до одинарного, который затем объединится со вторым таким же набором (у другого партнера) в ходе полового размножения[27]. В этом процессе избавления от “лишнего” клетки выбирают смесь отцовских и материнских хромосом; каждая пара хромосом вступает в своего рода половой акт, обмениваясь крупными фрагментами ДНК таким образом, что генетическое разнообразие в пределах одной хромосомы увеличивается. Несмотря на головоломную сложность смешивания, сопоставления и пересборки цепей из миллионов “букв” ДНК, клетки могут выполнять эти задачи безупречно именно благодаря процессу гомологичной рекомбинации. Тот же процесс происходит во всех царствах живых существ: к примеру, бактерии с его помощью обмениваются генетической информацией, а биологи пользуются преимуществами гомологичной рекомбинации для проведения генетических экспериментов на дрожжах в течение многих лет.
Тем не менее открытие того факта, что клеткам лабораторных млекопитающих также свойственно явление гомологичной рекомбинации, имело огромное значение. Марио Капекки писал в конце своей статьи 1982 года:
Будет интересно определить, сможем ли мы использовать [вовлеченные в процесс ферменты], чтобы путем гомологичной рекомбинации направленно воздействовать на гены, расположенные в определенных участках хромосом[28].
Другими словами, гомологичная рекомбинация позволяет ученым с безупречной точностью вставлять гены в подходящие места генома – а это поразительное усовершенствование по сравнению со случайной вставкой генов с помощью вирусов. И, что еще важнее, гомологичная рекомбинация может дать ученым возможность “переписывать” дефектные гены, помещая здоровые гены прямо в то место, где произошла мутация.
Спустя всего три года после экспериментов Капекки эта возможность воплотилась в реальность в примечательной научной работе, статью о которой опубликовал Оливер Смитис с коллегами. Работая с человеческими клетками, взятыми из опухолей мочевого пузыря, ученые поставили перед собой задачу заменить “доморощенные” копии гена бета-глобина в клетках на искусственные рекомбинантные версии, сконструированные в лаборатории. Невероятно, но это сработало[29]. Ученым не пришлось использовать никаких необычных трюков – они просто смешали ДНК с фосфатом кальция и опрыскали клетки полученной смесью – некоторые из клеток поглотили чужеродную ДНК, создали пары из разработанных в лаборатории цепочек ДНК и собственных подходящих последовательностей в геноме, а затем посредством некоторой “молекулярной гимнастики” заменили старые на новые.
Казалось, клетки могут проделывать большую часть сложной работы по модификации собственных геномов без посторонней помощи. Это означало, что ученые могли доставлять гены более мягким способом, не используя вирусы для “запихивания” новой ДНК в геном. Заставляя клетки “думать”, что рекомбинантная ДНК была лишь дополнительной хромосомой, которой нужно найти пару с подходящим геном, уже имеющимся в геноме, ученые могли гарантировать, что новая ДНК соединялась с изначально находящейся в клетке посредством гомологичной рекомбинации.
Ученые назвали этот новый подход к манипуляции с генами направленным воздействием на гены. Сегодня этот метод известен под другим именем: редактирование генома.
Потенциал этой технологии для генетических исследований был невероятно заманчив. Однако Смитис знал, что гомологичная рекомбинация может быть также использована и в качестве терапии. Если бы ученые смогли провести аналогичное направленное воздействие на гены в стволовых клетках пациентов, страдающих от серповидноклеточной анемии, то мутировавший ген бета-глобина можно было бы заменить на нормальную, здоровую последовательность. Открытие Смитиса было сделано в рамках экспериментального подхода, однако в один прекрасный день оно потенциально могло быть использовано для лечения заболеваний.
Другие лаборатории также вступили в конкуренцию за усовершенствование этой техники направленного воздействия на гены. Одной из них была лаборатория Капекки. В 1986-м, когда я была на втором курсе магистратуры, он показал, что гомологичная рекомбинация достаточно точна для того, чтобы исправлять даже точечные мутации в геноме и корректировать недостаточность ферментов в клетках[30]. Два года спустя Капекки предложил общую стратегию направленного воздействия на любой ген с известной последовательностью нуклеотидов в любом геноме. Он также предположил, что гомологичную рекомбинацию можно использовать не только для исправления и “ремонта” генов, но и для их инактивации в исследовательских целях[31]; “выключая” гены и наблюдая, что получится в результате, ученые могли определять функции этих генов.
Редактирование генома посредством гомологичной рекомбинации
К тому времени как я завершила работу над своей диссертацией на соискание степени доктора философии в конце 1980-х, направленное воздействие на гены широко применялось для редактирования ДНК в культурах клеток мышей и человека и даже в живых мышах. Важная работа, проведенная в лаборатории Мартина Эванса, продемонстрировала, что, направленно воздействуя на гены в эмбриональных стволовых клетках мышей и затем вводя эти измененные стволовые клетки обратно в мышиные эмбрионы, ученые могут создавать живых мышей с “дизайнерскими” изменениями. Важнейшие открытия, совершенные Капекки, Смитисом и Эвансом, впоследствии, в 2007 году, были удостоены Нобелевской премии по физиологии или медицине.
Впрочем, несмотря на свой колоссальный потенциал, редактирование генома поначалу больше подходило для фундаментальных исследований, чем для применения в лечении заболеваний у человека. Для ученых, исследующих генетику млекопитающих и пытающихся найти способы, которыми можно было бы выявить функции различных генов, метод направленного воздействия на гены в корне менял все. Однако исследователи-медики с настороженностью относились к использованию этого метода на людях, поскольку, несмотря на весь свой потенциал, гомологичная рекомбинация совсем не оправдывала ожиданий в том, что касалось лечения.
Возможно, самым важным сдерживающим фактором была проблема негомологичной (или незаконной) рекомбинации, при которой новая ДНК интегрируется в геном случайным образом, вместо того чтобы оказаться точно у подходящей последовательности. Фактически незаконная рекомбинация, похоже, происходила почти в сто раз чаще гомологичной, и, естественно, терапевтические перспективы технологии, которая могла исправить мутировавший ген лишь в 1 % измененных клеток, а в геном остальных 99 % “вклеивала” ДНК как попало, не выглядели слишком многообещающими. Ученые разрабатывали различные изящные пути обхода этой проблемы в клеточных культурах и не теряли надежду на то, что в будущем метод удастся применить в медицине. Как заявил Капекки в начале 1990-х, “в конце концов, гомологичная рекомбинация – единственный потенциально возможный метод генной терапии человека”[32]. Однако в то время казалось, что редактирование генома – просто недостаточно совершенная технология для того, чтобы применять ее на людях.
26
K. R. Folger et al., “Patterns of Integration of DNA Microinjected into Cultured Mammalian Cells: Evidence for Homologous Recombination Between Injected Plasmid DNA Molecules”, Molecular and Cellular Biology 2 (1982): 1372–1387.
27
Здесь описываются конъюгация и кроссинговер во время первого деления мейоза. В результате этого деления из одной клетки с двойным набором хромосом получается две клетки, каждая с одинарным набором хромосом.
28
Там же.
29
O. Smithies et al., “Insertion of DNA Sequences into the Human Chromosomal Beta-Globin Locus by Homologous Recombination”, Nature 317 (1985): 230–234.
30
K. R. Thomas, K. R. Folger, and M. R. Capecchi, “High Frequency Targeting of Genes to Specific Sites in the Mammalian Genome”, Cell 44 (1986): 419–428.
31
S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the Proto-Oncogene Int-2 in Mouse Embryo-Derived Stem Cells: A General Strategy for Targeting Mutations to Non-Selectable Genes”, Nature 336 (1988): 348–352.
32
J. Lyon and Peter Gorner, Altered Fates: Gene Therapy and the Retooling of Human Life (New York: Norton, 1995), 556.