Страница 1 из 2
Е. В. Бродовская, А. Ю. Домбровская
Большие данные в исследовании политических процессов Учебное пособие
Введение
Появление в конце XX в. интернет-коммуникации и ее интенсивное развитие оказало колоссальное воздействие на все сферы жизнедеятельности общества. С одной стороны, киберпространство предложило новый способ социального поведения людей, в том числе гражданского и политического участия. С другой – интернет-технологии обеспечили возможность аккумулирования цифровых «следов» поведения пользователей. Эти данные, идущие от поисковых систем, социальных медиа, мессенджеров, сенсорных устройств, огромные по объему и собираемые специальными машинами, называют большими данными – Big Data. Большие данные обладают рядом особых свойств:
– большим объемом, который несовместим с хранением на персональном компьютере;
– большой скоростью производства;
– содержательным многообразием;
– хаотичностью, неструктурированностью;
– гибкостью (совместимостью, подстраиваемостью под различные базы данных);
– корреляционностью.
Вместе с тем величина больших данных – это не главное в определении этого понятия. Основное – это природа их формирования. Большие данные создаются без исследовательского участия, это неспровоцированная информация, это автоматически сгенерированные данные о фактах социального поведения, которые невозможно обработать имеющимися сегодня пакетами для статистической обработки данных.
Большие данные впервые в истории прикладного политического анализа поставили вопрос о том, что основная проблема – не сбор информации, так как большие данные – это уже аккумулированный огромный массив постоянно пополняемой информации, вопрос заключается в способах анализа неструктурированных данных.
Вполне очевидно, что Big Data, этот глобальный массив социальной информации, представляет собой объект исследования большого числа научных дисциплин. Интегральной областью, изучающей взаимодействие информационных, политических, социальных и духовных процессов, является социальный компьютинг. Его основной метод – киберметрический анализ, который позволяет аккумулировать большие данные и анализировать репрезентированные в интернет-контенте цифровые маркеры политических процессов.
Для современного профессионала в сфере гуманитарного знания, и прежде всего политолога, реализующего интернет-технологии в политике и управлении (социально-медийную аналитику, технологии создания и продвижения онлайн-сетевых политических и коммерческих брендов и т. д.), весьма важной компетенцией служит умение применить техники киберметрии для оценки состояния и выявления тенденций в развитии политических процессов по цифровым маркерам. Немаловажно умение применить в научном исследовании методы киберметрии для аспирантов общественных и гуманитарных направлений подготовки, в том числе по научной специальности «Политология».
Учебное пособие имеет цель дать общее представление о понятии, эвристических возможностях метода больших данных в прикладном анализе политических процессов, а также сформировать навыки применения киберметрии в изучении цифровых маркеров политических изменений. Учебные кейсы, показанные в издании, направлены на формирование компетенций, связанных со способностью осуществлять графическую вербальную интерпретацию больших данных, автоматически генерируемых специальными инструментами анализа интернет-контента. Список контрольных вопросов для самопроверки, рекомендуемая литература по теме и приложения помогут студентам освоить методы применения больших данных в исследовании политических процессов.
Рекомендуется магистрантам направления «Интернет-технологии в политике и управлении» и аспирантам научной специальности «Политология», преподавателям высшей школы, читающим предметы, связанные с оценкой роли Интернета в современных реалиях, ученым, исследующим проблемы интернет-коммуникации с применением киберметрического анализа.
Глава I
Теоретико-методологические основы исследований с применением больших данных в системе методов социального компьютинга
Термин «большие данные» (Big Data) используется в двух смыслах. Это гигантские массивы информации – цифровые следы, аккумулируемые специальными инструментами из различных источников: социальных медиа, мессенджеров, сенсорных устройств и т. д. Большие данные в этом смысле характеризуют глобальный объем, неструктурированность, неспровоцированность создания. Дефиниция «большие данные» также может обозначать метод анализа гигантского по объему неструктурированного массива информации. В этой ипостаси большие данные отличает высокий эвристический потенциал оценки состояния и динамики массового сознания, гражданского и политического участия, жизненных стратегий пользователей, а также установления значимых корреляций для прогнозирования социальных и политических процессов по цифровым маркерам. Анализ больших данных осуществляется с помощью методов социального компьютинга. Поэтому важным представляется вначале рассмотреть понятие и сущность данного направления современных исследований и определить место автоматизированного анализа больших данных в системе методов социального компьютинга.
При определении понятия социального компьютинга также необходимо учитывать существование двух его проявлений – как области научных исследований и как сферы компьютерных технологий.
Приоритетная задача настоящего пособия состоит в анализе первого значения понятия. В этом случае социальный компьютинг понимается как область исследований, основанная на междисциплинарности и полипарадигмальности подхода к изучению взаимосвязи информационных, коммуникационных и социальных процессов, которая формируется в условиях функционирования и развития глобальной электронной сети.
Термин “Social Сomputing” дословно переводится как социальные «вычисления». Другими словами, это сплав социальной и компьютерной науки, сформировавший новую парадигму междисциплинарных исследований. Эта парадигма основана на позитивистском восприятии цифровых следов социальных связей индивидов как маркеров социальных и политических процессов.
Наиболее понятное и адекватное понимание социального компьютинга предложено А. А. Давыдовым [28], [29]. В его публикациях социальный компьютинг характеризуется как общий термин для обозначения группы технологий на стыке исследований и приложений в областях социального поведения и вычислительных систем или как совокупность социотехнических средств для анализа и использования человеческих связей как части процесса анализа больших данных.
Вместе с тем в специальной литературе встречается сужение определения социального компьютинга до использования вычислительных методов с целью изучения социального поведения. Данная трактовка рассматриваемого понятия не учитывает такой важный элемент социального компьютинга, как наличие взаимосвязи людей посредством Интернета, электронных социальных сетей.
Заслуживает внимания опыт определения термина «социальный компьютинг» на основе облака тегов, составленного по материалам докладов конференции “Social Computing, Behavioral-Cultural Modeling and Prediction”. В фокусе семантического ядра оказались понятия сети, социального, моделей и моделирования, динамики, анализа общественного мнения, двусторонней связи, реального и виртуального миров, симуляции, взаимодействия, информальных групп, социальных графов, анализа больших данных и проч.
Анализ облака тегов позволил выявить семантическое пространство «социального компьютинга» и редуцировать его к такому семантическому ряду: «моделирование социального взаимодействия общностей и групп с использованием методов анализа больших данных, репрезентированных в интернет-контенте».
Исходя из этого, многочисленные определения социального компьютинга сводятся к указанию на значимость синтеза точного и социально-гуманитарного знания в процессе исследования влияния интернет-коммуникации на сознание и поведение людей.