Страница 5 из 6
Таким образом, риск5 портфеля sp2 будет отличаться от средневзвешенной суммы рисков каждой из входящих в него ценных бумаг на слагаемое
,
содержащее коэффициенты корреляции. Коэффициенты корреляции могут быть как положительны, так и отрицательны; а следовательно, знак числа указанного выше может быть любой.
Таким образом, объединение бумаг в портфель может значительно изменить (уменьшить или увеличить) риск по сравнению со взвешенной суммой рисков бумаг, входящих в портфель (эффект диверсификации).
Посмотрим на рисунок 1. Нарисуем допустимое множество портфелей, т.е. все портфели, которые можно составить из рассматриваемого множества ценных бумаг с заданными характеристиками (ожидаемой доходностью и стандартным отклонением) и заданными коэффициентами корреляции. Обратим внимание, что поскольку x1 , …, xN (доли активов в портфеле) – это числа, принимающие любые значения, лежащие между нулем и единицей, то количество портфелей, которое можно составить из данных активов, бесконечно велико.
Пусть есть два объекта A и B, которые оцениваются по k критериям. Оценки объектов будут иметь вид a1…ak и b1…bk. По определению, объект А доминирует объект B по Парето (или по Эджворту-Парето, так как недавно обнаружили, что Эджворт ввел этот критерий раньше) или объект А сильно доминирует объект B, если оценки объекта A по всем критериям не хуже, чем оценки объекта B по всем критериям и хотя бы по одному критерию строго лучше, то есть
(где знаки «>=» и «>» означают «не хуже» и «строго лучше» при сравнении оценок по критерию).
Когда производится выбор из ряда альтернатив, оцениваемым по многим критериям, первым логичным шагом выбора всегда является их сравнение по Парето – ведь альтернатива, доминируемая по Парето заведомо хуже, чем доминирующая ее. Таким образом, перед тем, как производить дальнейшие действия, нужно выбрать из исходного множества альтернатив подмножество недоминируемых никакими другими по Парето и из них производить дальнейший выбор.
Рассмотрим это на примере портфельной теории Марковица. Обратимся к допустимому множеству X. Выберем один из портфелей из «середки» этого множества (пусть это будет портфель A). Утверждение: этот портфель доминируется по Парето другими, у которых риск такой же, а доходность выше (например, портфель B), или доходность такая же, а риск ниже (например, портфель С), или риск ниже, а доходность выше (например, портфель D).
Портфели, доминируемые по Парето, выбирать в качестве оптимальных не следует. Соответственно, первый этап решения инвестиционной задачи – отбросить варианты, доминируемые по Парето, то есть инвестиционные решения следует принимать только из портфелей эффективного множества. Эффективное множество – это множество портфелей из допустимого множества, не доминируемых по Парето никакими другими портфелями. На нашем рисунке они находятся левее и выше.
Можно доказать, что в общем случае эффективное множество всегда выпукло вверх. Тогда оптимальное решение находится как точка касания кривой безразличия и эффективного множества.
На этом мы закончим рассмотрение классической портфельной теории для целей изучения риска. Сделаем только еще одно замечание. В этой теории также вводится понятие безрискового актива, с которым связана теорема о том, что структура эффективного портфеля при наличии такого актива не будет зависеть от конкретного вида предпочтений инвестора.
Остановимся на вопросе, что такое безрисковый актив: предположим, что у нас период инвестирования составляет один год. Рассмотрим разные бумаги, которые могут претендовать на роль безрискового актива. Обычно это бумаги Казначейства США, но с тем же успехом мы можем взять еврооблигации России с погашением в 2030-м году. Через год они могут стоит по-разному. Значит, мы не можем называть в данных условиях этот актив безрисковым, поскольку безрисковость означает определенность. Если мы возьмем актив со сроком погашения меньшим, чем год, то он тоже не будет безрисковым, потому что полученные до окончания периода деньги нужно будет снова инвестировать, и, опять же, будет иметь место неопределенность (неизвестно, по какой ставке можно будет вложить денежные средства). Вывод: на практике безрисковым будет являться только тот актив, чей срок погашения совпадает с окончанием периода инвестирования и инвестору которого мы можем безоговорочно доверять.
Случайный и систематический риск. Рыночный риск и собственный риск актива
Рассмотрим следующую модель:
ri =Ai +BIrI + eiI (***)
Это типичная регрессионная модель. Здесь:
I – индекс рынка,
ri – доходность ценной бумаги,
rI – доходность рынка,
eiI – случайное отклонение.
Записав такую модель, мы предполагаем, что доходность ценной бумаги линейно связана с доходностью рынка. Здесь eiI – случайное отклонение (регрессионный остаток) от этой зависимости, которое считается «малым».
Тогда риск ценной бумаги, измеряемый, как и ранее, в терминах стандартного отклонения или дисперсии, есть:
s2i = BiI2s2I + s2ei
Таким образом, риск в данной модели, при некоторых предположениях относительно вероятностных характеристик, делится на два вида риска:
BiI2s2I – рыночный или систематический риск, то есть риск, связанный с поведением рынка;
s2ei – собственный риск ценной бумаги, то есть риск, обусловленный особенностями самой бумаги, отличающими ее от «типичного представителя» рынка.
Теперь аналогично предыдущему разделу рассмотрим портфель ценных бумаг. Запишем соотношение (***) для каждой из бумаг портфеля:
ri =Ai +BIrI + eiI
Домножим его почленно на долю ценной бумаги в портфеле :
ri xi =Aixi +BIrIxi + eiIxi
и сложим полученные соотношения для всех для всех i от 1 до N. В итоге получим:
rp =Ap +BpIrI + epI.
Получаем, что из предположения о линейной связи каждой бумаги с рынком следует аналогичное соотношение для портфеля (если говорить точнее, это утверждение верно при некоторых дополнительных предположениях о статистических свойствах регрессионных остатков и их связи).
Соответственно, для риска мы имеем:
s2p = BpI2s2I + s2ep.
Можно считать, что все ценные бумаги тем или иным образом связаны, так как их доходности связаны с рынком, зависят от него. Если исключить эту зависимость от рынка (рыночный риск), то с некоторой долей приближения можно считать, что собственное поведение акций независимо, то есть случайные величины – их доходности – некоррелированы. Для портфеля, содержащего большое количество разных акций, такое предположение довольно правдоподобно.
В этом случае получим следующее:
s2ep = сумма x2is2iI
Пример:
Пусть xi =1/N, i =1, …, N (доли всех ценных бумаг в портфеле равны).
Тогда
5
Здесь, говоря риск, мы рассматриваем дисперсию s2 вместо среднеквадратичного отклонения s поскольку это тоже самое для рассматриваемой задачи (*) максимизации доходности при ограниченном уровне риска, так как s2 – строго монотонно возрастающая функция s.