Добавить в цитаты Настройки чтения

Страница 4 из 9

Клетки иммунитета.

Несмотря на различия клеток врожденного иммунитета, о которых речь пойдет позднее, все клетки врожденного иммунитета являются потомками стволовых клеток крови и представителями белых кровяных телец – лейкоцитов. У каждой такой иммунной клетки есть своя специализация. И, тем не менее, их объединяют несколько задач. Наиболее важные – это защита организма от потенциально опасных существ, уборка клеточного и молекулярного «мусора», а также подавление процессов аутовоспаления, при котором происходит нейтрализация неадекватных реакций других иммунных клеток.

В начале книги мы сравнивали защитную систему организма с многоступенчатой системой обороны замка. Метафорически каждый тип иммунных клеток можно сравнить с определенным родом войск.

Нейтрофилы – это «пехотинцы» иммунной системы. Этих иммунных клеток в организме намного больше, чем остальных лейкоцитов – до 50–70 % всей популяции белых кровяных телец. Нейтрофилы быстрее всех попадают в район очага воспаления и переходят к активным действиям. Эти клетки вооружены молекулами иммунитета, которые способны уничтожать патогены. Один из возможных результатов «баталий» нейтрофилов с возбудителями инфекций – возникновение гнойников. Гной – это мертвые нейтрофилы и другие клетки, которые попали в радиус «столкновения» представителей лейкоцитов и возбудителей инфекций. Помимо атак, последствия которых заметны человеческому глазу, нейтрофилы способны поглощать бактериальные клетки и переваривать их без выброса сигнальных молекул. Таким образом другие клетки иммунитета не подключаются к атаке патогенов, и воспаления не возникает. Интересно, что нейтрализация угрозы нейтрофилами «без шума и пыли» происходит гораздо чаще, чем образование условных гнойников. Воспаления организму невыгодны. В тех случаях, когда к нейтрофилам подключаются другие клетки иммунитета и в теле все-таки возникают воспалительные процессы, организму приходится тратить множество ресурсов для того, чтобы нейтрализовать и сам очаг воспаления, и неизбежные негативные последствия его присутствия.

Нейтрофил

Эозинофилы можно сравнить с артиллерийскими войсками. В эозинофилах сосредоточены огромные запасы сильнейших цитотоксических веществ, под действием которых клетки патогенов разрушаются. Эти вещества по своей силе воздействия напоминают крупнокалиберное оружие, которым эозинофилы «вооружены до зубов». Именно эозинофилы первыми реагируют на вторжение паразитических червей, которые в несколько тысяч раз крупнее любых иммунных клеток. Благодаря высокому содержанию цитотоксических веществ и численному превосходству, эозинофилы способны избавлять организм от паразитов. Эти клетки врожденного иммунитета также участвуют в борьбе с Mycobacterium tuberculosis – возбудителем туберкулеза. Забрасывая очаги скопления микобактерий «химическими бомбами», эозинофилы не только борются с ними, но и разрушают легочную ткань. К сожалению, это довольно серьезно осложняет течение заболевания.

Эозинофил

Натуральные киллеры – это «отряд бойцов» иммунной системы, который уничтожает собственные дефектные или поврежденные клетки, представляющие угрозу для организма. Например, раковые или зараженные вирусами клетки.

Натуральный киллер

Натуральные киллеры могут «расстреливать» дефектные клетки при помощи специальных молекул – перфоринов и гранулизинов. Эти «пули» образуют поры в оболочке клеток. Часто такие действия натуральных киллеров становятся смертельными для их мишеней. Кроме того, натуральные киллеры используют другие молекулы для сдерживания потенциальных опасностей. Помимо перфоринов и гранулизинов, это гранзимы, усиливающие разрушительные действия первых двух видов молекул. Функция гранзимов состоит в том, чтобы запустить апоптоз – процесс запрограммированной клеточной гибели. После этого клетки-мишени совершают самоубийство и прекращают свою жизнедеятельность.

Моноциты и макрофаги, а также их модифицированные формы по своим функциям напоминают десантников.





Моноцит

Они находятся в крови до тех пор, пока им не поступает сигнал о попадании инфекции в организм. После этого клеточные подразделения направляются в ткани и органы, пораженные инфекциями, где они становятся тканевыми макрофагами. Там они поглощают возбудителей заболеваний и устраняют последствия деятельности нейтрофилов, эозинофилов и других типов иммунных клеток.

Базофилы в рамках иммунной системы выполняют функции связистов. Эти клетки мобилизуют и привлекают другие типы иммунных клеток, которые борются с инфекциями и иными угрозами. Базофилы обладают множеством сигнальных молекул, с помощью которых они передают информацию другим клеткам иммунной системы.

Клетки приобретенного иммунитета делятся на T- и B-лимфоциты. T- и В-лимфоциты образуются в костном мозге из стволовых клеток крови, как и другие лейкоциты. На поверхности у этих клеток находятся рецепторы – молекулы, несущие «зеркальные отпечатки» определённой части антигенов. Рецепторы присоединяются к одному антигену, сигнализируя тем самым о необходимости запуска иммунного ответа. Одна иммунная клетка может содержать рецепторы только для одного вида антигенов.

Базофил

Несмотря на то, что у Т-лимфоцитов есть рецепторы, они не умеют распознавать антигены, если те не представлены специальным образом. У всех клеток организма на поверхности присутствуют молекулы MHC – главного комплекса гистосовместимости (от англ. major histocompatibility complex). Молекулы МНС служат своего рода индикатором нормальной работы клетки и отсутствия заражений. Если клетка здорова, то МНС продемонстрирует Т-лимфоцитам собственные части белковых молекул, произведенных здоровой клеткой организма. Если же она заражена, то на молекулах MHC появятся чужеродные белковые фрагменты. Они становятся сигналом для Т-лимфоцитов к запуску иммунного ответа.

Лимфоциты

Выделяют 3 типа T-лимфоцитов: T-киллеры (в переводе с английского «to kill» – убивать) уничтожают зараженные клетки, Т-хелперы (от английского «to help» – помогать) сигнализируют другим клеткам о наличии угрозы и помогают бороться с инфекцией, и T-регуляторные клетки, которые контролируют иммунный ответ.

По одной из гипотез, молекулы MHC помогают найти полового партнера для размножения с помощью обонятельных сигналов – феромонов. Феромоны помогают определить вид, пол особи и генетическую совместимость. А гены молекул MHC обеспечивают основу для развития набора уникального «запаха». Чем больше различий в молекулах MHC у двух особей противоположного пола, тем более привлекательными они будут казаться друг другу, потому что это эволюционно выгодно: их генетические различия помогут оставить потомство с уникальным набором генов.

После обнаружения мишеней, Т-киллеры с помощью перфоринов и гранулизинов ликвидируют клетки организма, зараженные вирусами, а также опухолевые клетки.