Добавить в цитаты Настройки чтения

Страница 3 из 9

В костном мозге образуются все лейкоциты – белые кровяные тельца, которые осуществляют иммунные реакции. Лейкоциты – это потомки стволовых клеток крови, из которых в том числе развиваются красные кровяные тельца эритроциты, переносящие кислород, и кровяные пластинки тромбоциты, участвующие в каскаде свертывания крови под действием различных молекулярных факторов. Созревание и специализацию некоторые иммунные клетки завершают в иммунных органах – уже после выхода из органов кроветворения.

Лимфатические узлы – это органы округлой формы, которые располагаются вблизи лимфатических сосудов, соединяющих иммунные органы. Они играют роль своеобразных фильтров, которые собирают антигены – части чужеродных организмов. В этих узлах при взаимодействии антигенов с клетками приобретенного иммунитета происходит запуск образования антител – молекул-меток, при помощи которых иммунные клетки ликвидируют угрозы и оберегают организм от инфекций.

Работа лимфатической системы невозможна без соединительной ткани, которая циркулирует внутри системы. Лимфа – бесцветная прозрачная вязкая жидкость. Она движется по лимфатическим сосудам в сторону узлов системы за счет сокращения окружающих мышц. Лимфа содержит большое количество лимфоцитов, способных бороться с различными инфекциями. Здесь же B-лимфоциты секретируют антитела. Течение соединительной ткани внутри узла происходит достаточно медленно, и это дает лимфоцитам возможность взаимодействовать с другими лимфоцитами и дендритными клетками. Благодаря этому взаимодействию происходит запуск иммунного ответа со стороны приобретенного иммунитета.

Рисунок 1. Лимфатическая система

Селезенка – это самый крупный лимфоидный орган у позвоночных, который находится в брюшной полости. Его основная функция – быть фильтром для лимфы. В селезенке также происходит ее обогащение антителами. На ранних стадиях развития плода селезенка работает как орган кроветворения и производит в том числе самые первые иммунные клетки организма.

Прежде, чем переходить к описанию иммунных клеток, вспомним, что такое живая клетка и как она устроена.

Клетка – это структурно-функциональная элементарная единица строения и жизнедеятельности живого. Все живые организмы состоят из клеток. В некоторых случаях весь организм может быть представлен одной клеткой. Так, например, любая бактерия или микроскопический грибок, водоросль или простейшее является самостоятельной единицей живого.





Схема строения клетки животного

Клетка животного представляет собой микроскопический пузырек, оболочка или цитоплазматическая мембрана которого служит барьером с ограниченной проницаемостью для воды и других веществ. Внутри клетки находится цитоплазма – вязкая субстанция, в котором плавают клеточные органеллы или органы клетки, выполняющие различные функции. У клеток животных присутствует оформленное ядро, которое хранит генетическую информацию в ДНК (дезоксирибонуклеиновой кислоте). В ядре происходит синтез РНК (рибонуклеиновой кислоты), которая является посредником при передаче генетической информации. Согласно информации, переданной от ДНК в РНК, на рибосомах клетки вне ядра происходит синтез белка. Часто рибосомы могут находиться на стенках эндоплазматической сети – лабиринтообразного клеточного органа, необходимого для транспорта и синтеза не только белков, но и иных важных веществ – липидов, стероидов и многих других. При участии аппарата или комплекса Гольджи происходит процесс запасания нужных для клетки веществ и выведение остальных. Принцип работы аппарата Гольджи напоминает функционирование почтовой службы, которая упаковывает различное содержимое и может либо оставить «посылку» внутри клетки на хранение до более поздней отправки, либо направить в определенные органеллы немедленно. Некоторые «посылки» – лизосомы или внутриклеточные пузырьки, плавающие в цитоплазме – содержат ферменты, расщепляющие некоторые вещества. Эти биологические катализаторы нужны для осуществления внутриклеточного пищеварения, уничтожения ненужных продуктов жизнедеятельности клеток и вторгшихся в клетку патогенов. Для того, чтобы обеспечить все эти сложные процессы, в клетках работают «энергетические станции» – митохондрии. Эти органеллы запасают энергию в виде соединений благодаря процессам окисления, которые происходят на ее мембранах.

Клетка бактерии устроена проще, но вовсе не «примитивнее», чем клетка животного происхождения. Бактериальная клетка обладает всеми признаками живой системы. По сути, это самостоятельный организм. В отличие от клеток животных, у бактерий нет оформленного клеточного ядра, а ДНК находится в цитоплазме. Отсутствуют и эндоплазматическая сеть, и аппарат Гольджи, и митохондрии – бактерии «дышат» с помощью своей цитоплазматической мембраны и лизосом. В отличие от животных клеток, у бактерий упрощены системы транспортировки и хранения веществ. Возможно одной из причин количественного преобладания бактерий на Земле является наличие у них особенной защитной структуры – клеточной стенки, которая представляет из себя плотную оболочку из пептидогликана над цитоплазматической мембраной. Она защищает бактерию от неблагоприятных условий. В клетках животных клеточная стенка отсутствует.

Строение бактериальной клетки

Существует несколько видов клеток врожденного иммунитета человека – это базофилы, эозинофилы, натуральные киллеры, нейтрофилы, моноциты и их формы, мигрировавшие из кровотока в ткани – макрофаги. Последние два типа клеток иммунной системы известны также как фагоциты – клетки, способные к фагоцитозу, то есть к поглощению различных вредоносных организмов. Процесс захвата и переваривания частиц внутри клетки был впервые описан в 1875 году канадским врачом Уильямом Ослером. В своей работе «Патологии легких шахтеров» он рассказал о процессе накопления угольных частичек в клетках легких работников шахт. Однако то, что это явление имеет отношение к механизмам защиты организма, впервые предложил русский ученый, «отец» отечественной иммунологии Илья Мечников. Его фундаментальные труды по фагоцитарной теории иммунитета о том, что иммунные клетки способны поедать и переваривать чужеродные организмы, были признаны мировым сообществом. В своих работах 1883 года Мечников впервые систематизировал факты, предложив учение об иммунитете. В 1908 году Илья Мечников был удостоен Нобелевской премии по физиологии и медицине «за труды в области иммунитета». Он получил эту награду совместно с другим великим ученым немецкого происхождения Паулем Эрлихом. Этому исследователю принадлежит идея о «магической пуле», которая могла бы прицельно убивать бактериальные клетки. Эрлих первым получил сальварсан или арсфенамин – «препарат номер 606», которым относительно успешно лечили сифилис. Кроме того, Пауль Эрлих первым описал разные типы иммунных клеток. Он использовал в своих экспериментах «кислые», разработанные им «нейтральные» и «оснóвные» анилиновые красители. Благодаря применению усовершенствованных методов окрашивания белых кровяных телец и сопоставлению их с морфологическими свойствами различных клеток, Пауль Эрлих смог отделить несколько лейкоцитарных подмножеств друг от друга. Результаты его работы отражены в названиях клеток врожденного иммунитета: нейтрофил – лейкоцит, окрашивающийся «нейтральным» красителем; базофил – лейкоцит, окрашивающийся «оснóвным» красителем (от латинского «basis» – основание); эозинофил – лейкоцит, окрашивающийся «кислым» красителем эозином (от греческого («эос») – «утренняя заря»).